test_finetuning.py 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. from unittest.mock import patch
  2. import importlib
  3. from torch.utils.data.dataloader import DataLoader
  4. from llama_recipes.finetuning import main
  5. @patch('llama_recipes.finetuning.train')
  6. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  7. @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  8. @patch('llama_recipes.finetuning.get_preprocessed_dataset')
  9. @patch('llama_recipes.finetuning.optim.AdamW')
  10. @patch('llama_recipes.finetuning.StepLR')
  11. def test_finetuning_no_validation(step_lr, optimizer, get_dataset, tokenizer, get_model, train):
  12. kwargs = {"run_validation": False}
  13. get_dataset.return_value = [1]
  14. main(**kwargs)
  15. assert train.call_count == 1
  16. args, kwargs = train.call_args
  17. train_dataloader = args[1]
  18. eval_dataloader = args[2]
  19. assert isinstance(train_dataloader, DataLoader)
  20. assert eval_dataloader is None
  21. assert get_model.return_value.to.call_args.args[0] == "cuda"
  22. @patch('llama_recipes.finetuning.train')
  23. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  24. @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  25. @patch('llama_recipes.finetuning.get_preprocessed_dataset')
  26. @patch('llama_recipes.finetuning.optim.AdamW')
  27. @patch('llama_recipes.finetuning.StepLR')
  28. def test_finetuning_with_validation(step_lr, optimizer, get_dataset, tokenizer, get_model, train):
  29. kwargs = {"run_validation": True}
  30. get_dataset.return_value = [1]
  31. main(**kwargs)
  32. assert train.call_count == 1
  33. args, kwargs = train.call_args
  34. train_dataloader = args[1]
  35. eval_dataloader = args[2]
  36. assert isinstance(train_dataloader, DataLoader)
  37. assert isinstance(eval_dataloader, DataLoader)
  38. assert get_model.return_value.to.call_args.args[0] == "cuda"
  39. @patch('llama_recipes.finetuning.train')
  40. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  41. @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  42. @patch('llama_recipes.finetuning.get_preprocessed_dataset')
  43. @patch('llama_recipes.finetuning.generate_peft_config')
  44. @patch('llama_recipes.finetuning.get_peft_model')
  45. @patch('llama_recipes.finetuning.optim.AdamW')
  46. @patch('llama_recipes.finetuning.StepLR')
  47. def test_finetuning_peft(step_lr, optimizer, get_peft_model, gen_peft_config, get_dataset, tokenizer, get_model, train):
  48. kwargs = {"use_peft": True}
  49. get_dataset.return_value = [1]
  50. main(**kwargs)
  51. assert get_peft_model.return_value.to.call_args.args[0] == "cuda"
  52. assert get_peft_model.return_value.print_trainable_parameters.call_count == 1