123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
- import fire
- import os
- import sys
- import time
- import torch
- from transformers import AutoTokenizer
- from llama_recipes.inference.safety_utils import get_safety_checker
- from llama_recipes.inference.model_utils import load_model, load_peft_model
- def main(
- model_name,
- peft_model: str=None,
- quantization: bool=False,
- max_new_tokens =100, #The maximum numbers of tokens to generate
- prompt_file: str=None,
- seed: int=42, #seed value for reproducibility
- do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
- min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
- use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
- top_p: float=0.9, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
- temperature: float=0.6, # [optional] The value used to modulate the next token probabilities.
- top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
- repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
- length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
- enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
- enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
- enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
- enable_llamaguard_content_safety: bool=False, # Enable safety check with Llama-Guard
- use_fast_kernels: bool = True, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
- **kwargs
- ):
- if prompt_file is not None:
- assert os.path.exists(
- prompt_file
- ), f"Provided Prompt file does not exist {prompt_file}"
- with open(prompt_file, "r") as f:
- user_prompt = f.read()
- else:
- print("No user prompt provided. Exiting.")
- sys.exit(1)
-
- # Set the seeds for reproducibility
- torch.cuda.manual_seed(seed)
- torch.manual_seed(seed)
-
- model = load_model(model_name, quantization, use_fast_kernels)
- if peft_model:
- model = load_peft_model(model, peft_model)
- model.eval()
-
- tokenizer = AutoTokenizer.from_pretrained(model_name)
- safety_checker = get_safety_checker(enable_azure_content_safety,
- enable_sensitive_topics,
- enable_salesforce_content_safety,
- enable_llamaguard_content_safety,
- )
- # Safety check of the user prompt
- safety_results = [check(user_prompt) for check in safety_checker]
- are_safe = all([r[1] for r in safety_results])
- if are_safe:
- print("User prompt deemed safe.")
- print(f"User prompt:\n{user_prompt}")
- else:
- print("User prompt deemed unsafe.")
- for method, is_safe, report in safety_results:
- if not is_safe:
- print(method)
- print(report)
- print("Skipping the inference as the prompt is not safe.")
- sys.exit(1) # Exit the program with an error status
-
- batch = tokenizer(user_prompt, return_tensors="pt")
- batch = {k: v.to("cuda") for k, v in batch.items()}
- start = time.perf_counter()
- with torch.no_grad():
- outputs = model.generate(
- **batch,
- max_new_tokens=max_new_tokens,
- do_sample=do_sample,
- top_p=top_p,
- temperature=temperature,
- min_length=min_length,
- use_cache=use_cache,
- top_k=top_k,
- repetition_penalty=repetition_penalty,
- length_penalty=length_penalty,
- **kwargs
- )
- e2e_inference_time = (time.perf_counter()-start)*1000
- print(f"the inference time is {e2e_inference_time} ms")
- output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
-
- # Safety check of the model output
- safety_results = [check(output_text) for check in safety_checker]
- are_safe = all([r[1] for r in safety_results])
- if are_safe:
- print("User input and model output deemed safe.")
- print(f"Model output:\n{output_text}")
- else:
- print("Model output deemed unsafe.")
- for method, is_safe, report in safety_results:
- if not is_safe:
- print(method)
- print(report)
-
- if __name__ == "__main__":
- fire.Fire(main)
|