Hamid Shojanazeri f68b27c69e Merge branch 'main' into purple_llama 1 ano atrás
..
chat_completion b4c71bebee Update chat_completion.py 1 ano atrás
code_llama 2374b73aad Remove __init__.py files from examples 1 ano atrás
hf_text_generation_inference 2374b73aad Remove __init__.py files from examples 1 ano atrás
llama_guard dd9798f59c Removing actual prompts 1 ano atrás
vllm 3ddf755539 Move examples into subfolders 1 ano atrás
Getting_to_know_Llama.ipynb 0190444849 minor updates 1 ano atrás
Purple_Llama_Anyscale.ipynb 9c7d290615 add Purple_Llama_Anyscale.ipynb to examples 1 ano atrás
README.md 9c7d290615 add Purple_Llama_Anyscale.ipynb to examples 1 ano atrás
custom_dataset.py 8620ab8ac2 Fix invalid labels for context in custom dataset/oasst1 1 ano atrás
finetuning.py 7702d702cc Add missing file extension 1 ano atrás
inference.py 109b728d02 Adding Llama Guard safety checker. 1 ano atrás
multi_node.slurm 360a658262 Adjusted docs to reflect move of qs nb + finetuning script into examples 1 ano atrás
quickstart.ipynb a0cd3c7c77 Added dependency to qsnb 1 ano atrás
samsum_prompt.txt ccda6fb8ca Move inference scripts into example folder 1 ano atrás

README.md

Examples

This folder contains finetuning and inference examples for Llama 2, Code Llama and (Purple Llama](https://ai.meta.com/llama/purple-llama/). For the full documentation on these examples please refer to docs/inference.md

Finetuning

Please refer to the main README.md for information on how to use the finetuning.py script. After installing the llama-recipes package through pip you can also invoke the finetuning in two ways:

python -m llama_recipes.finetuning <parameters>

python examples/finetuning.py <parameters>

Please see README.md for details.

Inference

So far, we have provide the following inference examples:

  1. inference script script provides support for Hugging Face accelerate, PEFT and FSDP fine tuned models. It also demonstrates safety features to protect the user from toxic or harmful content.

  2. vllm/inference.py script takes advantage of vLLM's paged attention concept for low latency.

  3. The hf_text_generation_inference folder contains information on Hugging Face Text Generation Inference (TGI).

  4. A chat completion example highlighting the handling of chat dialogs.

  5. Code Llama folder which provides examples for code completion and code infilling.

  6. The Purple Llama Using Anyscale is a notebook that shows how to use Anyscale hosted Llama Guard model to classify user inputs as safe or unsafe.

For more in depth information on inference including inference safety checks and examples, see the inference documentation here.

Note The sensitive topics safety checker utilizes AuditNLG which is an optional dependency. Please refer to installation section of the main README.md for details.

Note The vLLM example requires additional dependencies. Please refer to installation section of the main README.md for details.

Train on custom dataset

To show how to train a model on a custom dataset we provide an example to generate a custom dataset in custom_dataset.py. The usage of the custom dataset is further described in the datasets README.