12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- """
- Code borrowed from https://github.com/ymcui/Chinese-LLaMA-Alpaca/blob/main/scripts/merge_tokenizer/merge_tokenizers.py
- """
- import os
- import fire
- import re
- from transformers import LlamaTokenizer
- os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
- from huggingface_hub import hf_hub_download
- from sentencepiece import sentencepiece_model_pb2 as sp_pb2_model
- def main(new_tokenizer_path, extended_tokenizer_save_path):
- original_tokenizer_path = hf_hub_download(repo_id="meta-llama/Llama-2-7b-chat-hf", filename="tokenizer.model", local_dir="original_tokenizer")
- original_tokenizer_spm = sp_pb2_model.ModelProto()
- original_tokenizer_spm.ParseFromString(open(original_tokenizer_path, "rb").read())
- new_tokenizer_spm = sp_pb2_model.ModelProto()
- new_tokenizer_spm.ParseFromString(open(os.path.join(new_tokenizer_path, "tokenizer.model"), "rb").read())
- def contains_eng(text):
- eng_pattern = re.compile(r"[\u0020-\u007E]+")
- return True if eng_pattern.search(text) else False
- original_tokenizer_tokenset = set(p.piece for p in original_tokenizer_spm.pieces)
- print(f"Number of tokens before merge: {len(original_tokenizer_tokenset)}")
- for p in new_tokenizer_spm.pieces:
- piece = p.piece
- if piece not in original_tokenizer_tokenset and not contains_eng(piece):
- new_p = sp_pb2_model.ModelProto().SentencePiece()
- new_p.piece = piece
- new_p.score = 0
- original_tokenizer_spm.pieces.append(new_p)
- print(f"Number of tokens after merge: {len(original_tokenizer_spm.pieces)}")
- os.makedirs(extended_tokenizer_save_path, exist_ok=True)
- with open(os.path.join(extended_tokenizer_save_path, "tokenizer.model"), "wb") as f:
- f.write(original_tokenizer_spm.SerializeToString())
- tokenizer = LlamaTokenizer(vocab_file=os.path.join(extended_tokenizer_save_path, "tokenizer.model"), legacy=False)
- tokenizer.save_pretrained(extended_tokenizer_save_path)
- print(f"Tokenizer saved to {extended_tokenizer_save_path}")
- # Verify that the extended tokenizer's English vocab matches with that of the original Llama tokenizer
- tok1 = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-7b-chat-hf')
- tok2 = LlamaTokenizer.from_pretrained(extended_tokenizer_save_path)
- for i in range(len(tok1)):
- assert tok1.convert_ids_to_tokens(i) == tok2.convert_ids_to_tokens(i), f"Token mismatch at index {i}."
- if __name__ == "__main__":
- fire.Fire(main)
|