test_finetuning.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. import pytest
  4. from pytest import approx
  5. from unittest.mock import patch
  6. import torch
  7. from torch.nn import Linear
  8. from torch.optim import AdamW
  9. from torch.utils.data.dataloader import DataLoader
  10. from torch.utils.data.sampler import BatchSampler
  11. from llama_recipes.finetuning import main
  12. from llama_recipes.data.sampler import LengthBasedBatchSampler
  13. def get_fake_dataset():
  14. return [{
  15. "input_ids":[1],
  16. "attention_mask":[1],
  17. "labels":[1],
  18. }]
  19. @patch('llama_recipes.finetuning.train')
  20. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  21. @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  22. @patch('llama_recipes.finetuning.get_preprocessed_dataset')
  23. @patch('llama_recipes.finetuning.optim.AdamW')
  24. @patch('llama_recipes.finetuning.StepLR')
  25. def test_finetuning_no_validation(step_lr, optimizer, get_dataset, tokenizer, get_model, train):
  26. kwargs = {"run_validation": False}
  27. get_dataset.return_value = get_fake_dataset()
  28. main(**kwargs)
  29. assert train.call_count == 1
  30. args, kwargs = train.call_args
  31. train_dataloader = args[1]
  32. eval_dataloader = args[2]
  33. assert isinstance(train_dataloader, DataLoader)
  34. assert eval_dataloader is None
  35. assert get_model.return_value.to.call_args.args[0] == "cuda"
  36. @patch('llama_recipes.finetuning.train')
  37. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  38. @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  39. @patch('llama_recipes.finetuning.get_preprocessed_dataset')
  40. @patch('llama_recipes.finetuning.optim.AdamW')
  41. @patch('llama_recipes.finetuning.StepLR')
  42. def test_finetuning_with_validation(step_lr, optimizer, get_dataset, tokenizer, get_model, train):
  43. kwargs = {"run_validation": True}
  44. get_dataset.return_value = get_fake_dataset()
  45. main(**kwargs)
  46. assert train.call_count == 1
  47. args, kwargs = train.call_args
  48. train_dataloader = args[1]
  49. eval_dataloader = args[2]
  50. assert isinstance(train_dataloader, DataLoader)
  51. assert isinstance(eval_dataloader, DataLoader)
  52. assert get_model.return_value.to.call_args.args[0] == "cuda"
  53. @patch('llama_recipes.finetuning.train')
  54. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  55. @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  56. @patch('llama_recipes.finetuning.get_preprocessed_dataset')
  57. @patch('llama_recipes.finetuning.generate_peft_config')
  58. @patch('llama_recipes.finetuning.get_peft_model')
  59. @patch('llama_recipes.finetuning.optim.AdamW')
  60. @patch('llama_recipes.finetuning.StepLR')
  61. def test_finetuning_peft(step_lr, optimizer, get_peft_model, gen_peft_config, get_dataset, tokenizer, get_model, train):
  62. kwargs = {"use_peft": True}
  63. get_dataset.return_value = get_fake_dataset()
  64. main(**kwargs)
  65. assert get_peft_model.return_value.to.call_args.args[0] == "cuda"
  66. assert get_peft_model.return_value.print_trainable_parameters.call_count == 1
  67. @patch('llama_recipes.finetuning.train')
  68. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  69. @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  70. @patch('llama_recipes.finetuning.get_preprocessed_dataset')
  71. @patch('llama_recipes.finetuning.get_peft_model')
  72. @patch('llama_recipes.finetuning.StepLR')
  73. def test_finetuning_weight_decay(step_lr, get_peft_model, get_dataset, tokenizer, get_model, train, mocker):
  74. kwargs = {"weight_decay": 0.01}
  75. get_dataset.return_value = get_fake_dataset()
  76. model = mocker.MagicMock(name="Model")
  77. model.parameters.return_value = [torch.ones(1,1)]
  78. get_model.return_value = model
  79. main(**kwargs)
  80. assert train.call_count == 1
  81. args, kwargs = train.call_args
  82. optimizer = args[4]
  83. print(optimizer.state_dict())
  84. assert isinstance(optimizer, AdamW)
  85. assert optimizer.state_dict()["param_groups"][0]["weight_decay"] == approx(0.01)
  86. @patch('llama_recipes.finetuning.train')
  87. @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
  88. @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
  89. @patch('llama_recipes.finetuning.get_preprocessed_dataset')
  90. @patch('llama_recipes.finetuning.optim.AdamW')
  91. @patch('llama_recipes.finetuning.StepLR')
  92. def test_batching_strategy(step_lr, optimizer, get_dataset, tokenizer, get_model, train):
  93. kwargs = {"batching_strategy": "packing"}
  94. get_dataset.return_value = get_fake_dataset()
  95. main(**kwargs)
  96. assert train.call_count == 1
  97. args, kwargs = train.call_args
  98. train_dataloader, eval_dataloader = args[1:3]
  99. assert isinstance(train_dataloader.batch_sampler, BatchSampler)
  100. assert isinstance(eval_dataloader.batch_sampler, BatchSampler)
  101. kwargs["batching_strategy"] = "padding"
  102. train.reset_mock()
  103. main(**kwargs)
  104. assert train.call_count == 1
  105. args, kwargs = train.call_args
  106. train_dataloader, eval_dataloader = args[1:3]
  107. assert isinstance(train_dataloader.batch_sampler, LengthBasedBatchSampler)
  108. assert isinstance(eval_dataloader.batch_sampler, LengthBasedBatchSampler)
  109. kwargs["batching_strategy"] = "none"
  110. with pytest.raises(ValueError):
  111. main(**kwargs)