123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import json
- import os
- import sys
- import time
- from pathlib import Path
- from typing import List, Literal, Optional, Tuple, TypedDict
- import torch
- import torch.nn.functional as F
- from fairscale.nn.model_parallel.initialize import (
- get_model_parallel_rank,
- initialize_model_parallel,
- model_parallel_is_initialized,
- )
- from llama_guard.model import ModelArgs, Transformer
- from llama_guard.tokenizer import Tokenizer
- Role = Literal["system", "user", "assistant"]
- class Message(TypedDict):
- role: Role
- content: str
- class CompletionPrediction(TypedDict, total=False):
- generation: str
- tokens: List[str] # not required
- logprobs: List[float] # not required
- class ChatPrediction(TypedDict, total=False):
- generation: Message
- tokens: List[str] # not required
- logprobs: List[float] # not required
- Dialog = List[Message]
- B_INST, E_INST = "[INST]", "[/INST]"
- B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
- SPECIAL_TAGS = [B_INST, E_INST, "<<SYS>>", "<</SYS>>"]
- UNSAFE_ERROR = "Error: special tags are not allowed as part of the prompt."
- class Llama:
- @staticmethod
- def build(
- ckpt_dir: str,
- tokenizer_path: str,
- max_seq_len: int,
- max_batch_size: int,
- model_parallel_size: Optional[int] = None,
- seed: int = 1,
- ) -> "Llama":
- """
- Build a Llama instance by initializing and loading a pre-trained model.
- Args:
- ckpt_dir (str): Path to the directory containing checkpoint files.
- tokenizer_path (str): Path to the tokenizer file.
- max_seq_len (int): Maximum sequence length for input text.
- max_batch_size (int): Maximum batch size for inference.
- model_parallel_size (Optional[int], optional): Number of model parallel processes.
- If not provided, it's determined from the environment. Defaults to None.
- Returns:
- Llama: An instance of the Llama class with the loaded model and tokenizer.
- Raises:
- AssertionError: If there are no checkpoint files in the specified directory,
- or if the model parallel size does not match the number of checkpoint files.
- Note:
- This method initializes the distributed process group, sets the device to CUDA,
- and loads the pre-trained model and tokenizer.
- """
- if not torch.distributed.is_initialized():
- torch.distributed.init_process_group("nccl")
- if not model_parallel_is_initialized():
- if model_parallel_size is None:
- model_parallel_size = int(os.environ.get("WORLD_SIZE", 1))
- initialize_model_parallel(model_parallel_size)
- local_rank = int(os.environ.get("LOCAL_RANK", 0))
- torch.cuda.set_device(local_rank)
- # seed must be the same in all processes
- torch.manual_seed(seed)
- if local_rank > 0:
- sys.stdout = open(os.devnull, "w")
- start_time = time.time()
- checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
- checkpoints_size = len(checkpoints)
- assert checkpoints_size > 0, f"no checkpoint files found in {ckpt_dir}"
- ckpt_path = checkpoints[get_model_parallel_rank()]
- checkpoint = torch.load(ckpt_path, map_location="cpu")
- with open(Path(ckpt_dir) / "params.json", "r") as f:
- params = json.loads(f.read())
- model_args: ModelArgs = ModelArgs(
- max_seq_len=max_seq_len,
- max_batch_size=max_batch_size,
- **params,
- )
- tokenizer = Tokenizer(model_path=tokenizer_path)
- model_args.vocab_size = tokenizer.n_words
- torch.set_default_tensor_type(torch.cuda.HalfTensor)
- model = Transformer(model_args)
- model.load_state_dict(checkpoint, strict=False)
- print(f"Loaded in {time.time() - start_time:.2f} seconds")
- return Llama(model, tokenizer)
- def __init__(self, model: Transformer, tokenizer: Tokenizer):
- self.model = model
- self.tokenizer = tokenizer
- @torch.inference_mode()
- def generate(
- self,
- prompt_tokens: List[List[int]],
- max_gen_len: int,
- temperature: float = 0.6,
- top_p: float = 0.9,
- logprobs: bool = False,
- echo: bool = False,
- ) -> Tuple[List[List[int]], Optional[List[List[float]]]]:
- """
- Generate text sequences based on provided prompts using the language generation model.
- Args:
- prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers.
- max_gen_len (int): Maximum length of the generated text sequence.
- temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
- top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
- logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
- echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
- Returns:
- Tuple[List[List[int]], Optional[List[List[float]]]]: A tuple containing generated token sequences and, if logprobs is True, corresponding token log probabilities.
- Note:
- This method uses the provided prompts as a basis for generating text. It employs nucleus sampling to produce text with controlled randomness.
- If logprobs is True, token log probabilities are computed for each generated token.
- """
- params = self.model.params
- bsz = len(prompt_tokens)
- assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
- min_prompt_len = min(len(t) for t in prompt_tokens)
- max_prompt_len = max(len(t) for t in prompt_tokens)
- assert max_prompt_len <= params.max_seq_len
- total_len = min(params.max_seq_len, max_gen_len + max_prompt_len)
- pad_id = self.tokenizer.pad_id
- tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda")
- for k, t in enumerate(prompt_tokens):
- tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
- if logprobs:
- token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
- prev_pos = 0
- eos_reached = torch.tensor([False] * bsz, device="cuda")
- input_text_mask = tokens != pad_id
- if min_prompt_len == total_len:
- logits = self.model.forward(tokens, prev_pos)
- token_logprobs = -F.cross_entropy(
- input=logits.transpose(1, 2),
- target=tokens,
- reduction="none",
- ignore_index=pad_id,
- )
- for cur_pos in range(min_prompt_len, total_len):
- logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
- if temperature > 0:
- probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
- next_token = sample_top_p(probs, top_p)
- else:
- next_token = torch.argmax(logits[:, -1], dim=-1)
- next_token = next_token.reshape(-1)
- # only replace token if prompt has already been generated
- next_token = torch.where(
- input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
- )
- tokens[:, cur_pos] = next_token
- if logprobs:
- token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
- input=logits.transpose(1, 2),
- target=tokens[:, prev_pos + 1 : cur_pos + 1],
- reduction="none",
- ignore_index=pad_id,
- )
- eos_reached |= (~input_text_mask[:, cur_pos]) & (
- next_token == self.tokenizer.eos_id
- )
- prev_pos = cur_pos
- if all(eos_reached):
- break
- if logprobs:
- token_logprobs = token_logprobs.tolist()
- out_tokens, out_logprobs = [], []
- for i, toks in enumerate(tokens.tolist()):
- # cut to max gen len
- start = 0 if echo else len(prompt_tokens[i])
- toks = toks[start : len(prompt_tokens[i]) + max_gen_len]
- probs = None
- if logprobs:
- probs = token_logprobs[i][start : len(prompt_tokens[i]) + max_gen_len]
- # cut to eos tok if any
- if self.tokenizer.eos_id in toks:
- eos_idx = toks.index(self.tokenizer.eos_id)
- toks = toks[:eos_idx]
- probs = probs[:eos_idx] if logprobs else None
- out_tokens.append(toks)
- out_logprobs.append(probs)
- return (out_tokens, out_logprobs if logprobs else None)
- def text_completion(
- self,
- prompts: List[str],
- temperature: float = 0.6,
- top_p: float = 0.9,
- max_gen_len: Optional[int] = None,
- logprobs: bool = False,
- echo: bool = False,
- ) -> List[CompletionPrediction]:
- """
- Perform text completion for a list of prompts using the language generation model.
- Args:
- prompts (List[str]): List of text prompts for completion.
- temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
- top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
- max_gen_len (Optional[int], optional): Maximum length of the generated completion sequence.
- If not provided, it's set to the model's maximum sequence length minus 1.
- logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
- echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
- Returns:
- List[CompletionPrediction]: List of completion predictions, each containing the generated text completion.
- Note:
- This method generates text completions for the provided prompts, employing nucleus sampling to introduce controlled randomness.
- If logprobs is True, token log probabilities are computed for each generated token.
- """
- if max_gen_len is None:
- max_gen_len = self.model.params.max_seq_len - 1
- prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts]
- generation_tokens, generation_logprobs = self.generate(
- prompt_tokens=prompt_tokens,
- max_gen_len=max_gen_len,
- temperature=temperature,
- top_p=top_p,
- logprobs=logprobs,
- echo=echo,
- )
- if logprobs:
- return [
- {
- "generation": self.tokenizer.decode(t),
- "tokens": [self.tokenizer.decode(x) for x in t],
- "logprobs": logprobs_i,
- }
- for t, logprobs_i in zip(generation_tokens, generation_logprobs)
- ]
- return [{"generation": self.tokenizer.decode(t)} for t in generation_tokens]
- def chat_completion(
- self,
- dialogs: List[Dialog],
- temperature: float = 0.6,
- top_p: float = 0.9,
- max_gen_len: Optional[int] = None,
- logprobs: bool = False,
- ) -> List[ChatPrediction]:
- """
- Generate assistant responses for a list of conversational dialogs using the language generation model.
- Args:
- dialogs (List[Dialog]): List of conversational dialogs, where each dialog is a list of messages.
- temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
- top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
- max_gen_len (Optional[int], optional): Maximum length of the generated response sequence.
- If not provided, it's set to the model's maximum sequence length minus 1.
- logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
- Returns:
- List[ChatPrediction]: List of chat predictions, each containing the assistant's generated response.
- Raises:
- AssertionError: If the last message in a dialog is not from the user.
- AssertionError: If the dialog roles are not in the required 'user', 'assistant', and optional 'system' order.
- Note:
- This method generates assistant responses for the provided conversational dialogs.
- It employs nucleus sampling to introduce controlled randomness in text generation.
- If logprobs is True, token log probabilities are computed for each generated token.
- """
- if max_gen_len is None:
- max_gen_len = self.model.params.max_seq_len - 1
- prompt_tokens = []
- unsafe_requests = []
- for dialog in dialogs:
- unsafe_requests.append(
- any([tag in msg["content"] for tag in SPECIAL_TAGS for msg in dialog])
- )
- if dialog[0]["role"] == "system":
- dialog = [
- {
- "role": dialog[1]["role"],
- "content": B_SYS
- + dialog[0]["content"]
- + E_SYS
- + dialog[1]["content"],
- }
- ] + dialog[2:]
- assert all([msg["role"] == "user" for msg in dialog[::2]]) and all(
- [msg["role"] == "assistant" for msg in dialog[1::2]]
- ), (
- "model only supports 'system', 'user' and 'assistant' roles, "
- "starting with 'system', then 'user' and alternating (u/a/u/a/u...)"
- )
- dialog_tokens: List[int] = sum(
- [
- self.tokenizer.encode(
- f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ",
- bos=True,
- eos=True,
- )
- for prompt, answer in zip(
- dialog[::2],
- dialog[1::2],
- )
- ],
- [],
- )
- assert (
- dialog[-1]["role"] == "user"
- ), f"Last message must be from user, got {dialog[-1]['role']}"
- dialog_tokens += self.tokenizer.encode(
- f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}",
- bos=True,
- eos=False,
- )
- prompt_tokens.append(dialog_tokens)
- generation_tokens, generation_logprobs = self.generate(
- prompt_tokens=prompt_tokens,
- max_gen_len=max_gen_len,
- temperature=temperature,
- top_p=top_p,
- logprobs=logprobs,
- )
- if logprobs:
- return [
- {
- "generation": {
- "role": "assistant",
- "content": self.tokenizer.decode(t)
- if not unsafe
- else UNSAFE_ERROR,
- },
- "tokens": [self.tokenizer.decode(x) for x in t],
- "logprobs": logprobs_i,
- }
- for t, logprobs_i, unsafe in zip(
- generation_tokens, generation_logprobs, unsafe_requests
- )
- ]
- return [
- {
- "generation": {
- "role": "assistant",
- "content": self.tokenizer.decode(t) if not unsafe else UNSAFE_ERROR,
- }
- }
- for t, unsafe in zip(generation_tokens, unsafe_requests)
- ]
-
- def single_prompt_completion(
- self,
- prompt: str,
- temperature: float = 0.6,
- top_p: float = 0.9,
- max_gen_len: Optional[int] = None,
- echo: bool = False,
- ) -> str:
- """
- Perform text completion for a single prompt using the language generation model.
- Args:
- prompts (str): prompt for completion.
- temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
- top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
- max_gen_len (Optional[int], optional): Maximum length of the generated completion sequence.
- If not provided, it's set to the model's maximum sequence length minus 1.
-
- Returns:
- str: single string with the decoded output from the model.
- Note:
- This method generates text completions for the provided prompts, employing nucleus sampling to introduce controlled randomness.
- """
- if max_gen_len is None:
- max_gen_len = self.model.params.max_seq_len - 1
- prompt_tokens = [self.tokenizer.encode(f"{B_INST} {prompt.strip()} {E_INST}", bos=True, eos=False)]
- generation_tokens = self.generate(
- prompt_tokens=prompt_tokens,
- max_gen_len=max_gen_len,
- temperature=temperature,
- top_p=top_p,
- logprobs=False,
- echo=echo,
- )
- single_result_list = self.tokenizer.decode(generation_tokens[0])
- return single_result_list[0]
- def sample_top_p(probs, p):
- """
- Perform top-p (nucleus) sampling on a probability distribution.
- Args:
- probs (torch.Tensor): Probability distribution tensor.
- p (float): Probability threshold for top-p sampling.
- Returns:
- torch.Tensor: Sampled token indices.
- Note:
- Top-p sampling selects the smallest set of tokens whose cumulative probability mass
- exceeds the threshold p. The distribution is renormalized based on the selected tokens.
- """
- probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
- probs_sum = torch.cumsum(probs_sort, dim=-1)
- mask = probs_sum - probs_sort > p
- probs_sort[mask] = 0.0
- probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
- next_token = torch.multinomial(probs_sort, num_samples=1)
- next_token = torch.gather(probs_idx, -1, next_token)
- return next_token
|