# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import json import matplotlib.pyplot as plt import argparse import os def plot_metric(data, metric_name, x_label, y_label, title, colors): plt.figure(figsize=(7, 6)) plt.plot(data[f'train_epoch_{metric_name}'], label=f'Train Epoch {metric_name.capitalize()}', color=colors[0]) plt.plot(data[f'val_epoch_{metric_name}'], label=f'Validation Epoch {metric_name.capitalize()}', color=colors[1]) plt.xlabel(x_label) plt.ylabel(y_label) plt.title(f'Train and Validation Epoch {title}') plt.legend() plt.tight_layout() def plot_single_metric_by_step(data, metric_name, x_label, y_label, title, color): plt.plot(data[f'{metric_name}'], label=f'{title}', color=color) plt.xlabel(x_label) plt.ylabel(y_label) plt.title(title) plt.legend() plt.tight_layout() def plot_metrics_by_step(data, metric_name, x_label, y_label, colors): plt.figure(figsize=(14, 6)) plt.subplot(1, 2, 1) plot_single_metric_by_step(data, f'train_step_{metric_name}', x_label, y_label, f'Train Step {metric_name.capitalize()}', colors[0]) plt.subplot(1, 2, 2) plot_single_metric_by_step(data, f'val_step_{metric_name}', x_label, y_label, f'Validation Step {metric_name.capitalize()}', colors[1]) plt.tight_layout() def plot_metrics(file_path): if not os.path.exists(file_path): print(f"File {file_path} does not exist.") return with open(file_path, 'r') as f: try: data = json.load(f) except json.JSONDecodeError: print("Invalid JSON file.") return directory = os.path.dirname(file_path) filename_prefix = os.path.basename(file_path).split('.')[0] plot_metric(data, 'loss', 'Epoch', 'Loss', 'Loss', ['b', 'r']) plt.savefig(os.path.join(directory, f"{filename_prefix}_train_and_validation_loss.png")) plt.close() plot_metric(data, 'perplexity', 'Epoch', 'Perplexity', 'Perplexity', ['g', 'm']) plt.savefig(os.path.join(directory, f"{filename_prefix}_train_and_validation_perplexity.png")) plt.close() plot_metrics_by_step(data, 'loss', 'Step', 'Loss', ['b', 'r']) plt.savefig(os.path.join(directory, f"{filename_prefix}_train_and_validation_loss_by_step.png")) plt.close() plot_metrics_by_step(data, 'perplexity', 'Step', 'Loss', ['g', 'm']) plt.savefig(os.path.join(directory, f"{filename_prefix}_train_and_validation_perplexity_by_step.png")) plt.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description='Plot metrics from JSON file.') parser.add_argument('--file_path', required=True, type=str, help='Path to the metrics JSON file.') args = parser.parse_args() plot_metrics(args.file_path)