# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import importlib from functools import partial from pathlib import Path import torch from llama_recipes.datasets import ( get_grammar_dataset, get_alpaca_dataset, get_samsum_dataset, ) def load_module_from_py_file(py_file: str) -> object: """ This method loads a module from a py file which is not in the Python path """ module_name = Path(py_file).name loader = importlib.machinery.SourceFileLoader(module_name, py_file) spec = importlib.util.spec_from_loader(module_name, loader) module = importlib.util.module_from_spec(spec) loader.exec_module(module) return module def get_custom_dataset(dataset_config, tokenizer, split: str): if ":" in dataset_config.file: module_path, func_name = dataset_config.file.split(":") else: module_path, func_name = dataset_config.file, "get_custom_dataset" if not module_path.endswith(".py"): raise ValueError(f"Dataset file {module_path} is not a .py file.") module_path = Path(module_path) if not module_path.is_file(): raise FileNotFoundError(f"Dataset py file {module_path.as_posix()} does not exist or is not a file.") module = load_module_from_py_file(module_path.as_posix()) try: return getattr(module, func_name)(dataset_config, tokenizer, split) except AttributeError as e: print(f"It seems like the given method name ({func_name}) is not present in the dataset .py file ({module_path.as_posix()}).") raise e DATASET_PREPROC = { "alpaca_dataset": partial(get_alpaca_dataset, max_words=224), "grammar_dataset": get_grammar_dataset, "samsum_dataset": get_samsum_dataset, "custom_dataset": get_custom_dataset, } def get_preprocessed_dataset( tokenizer, dataset_config, split: str = "train" ) -> torch.utils.data.Dataset: if not dataset_config.dataset in DATASET_PREPROC: raise NotImplementedError(f"{dataset_config.dataset} is not (yet) implemented") def get_split(): return ( dataset_config.train_split if split == "train" else dataset_config.test_split ) return DATASET_PREPROC[dataset_config.dataset]( dataset_config, tokenizer, get_split(), )