# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import pytest from functools import partial from unittest.mock import patch EXPECTED_RESULTS = { "meta-llama/Llama-2-7b-hf":{ "label": 8432, "pos": 242, }, "meta-llama/Llama-3-8b-hf":{ "label": 2250, "pos": 211, }, } @pytest.mark.skip_missing_tokenizer @patch('llama_recipes.finetuning.train') @patch('llama_recipes.finetuning.AutoTokenizer') @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained') @patch('llama_recipes.finetuning.optim.AdamW') @patch('llama_recipes.finetuning.StepLR') def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer, llama_version): from llama_recipes.finetuning import main setup_tokenizer(tokenizer) BATCH_SIZE = 8 kwargs = { "model_name": llama_version, "batch_size_training": BATCH_SIZE, "val_batch_size": 1, "use_peft": False, "dataset": "samsum_dataset", "batching_strategy": "padding", } main(**kwargs) assert train.call_count == 1 args, kwargs = train.call_args train_dataloader = args[1] eval_dataloader = args[2] token = args[3] VAL_SAMPLES = 818 TRAIN_SAMPLES = 14732 assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE assert len(eval_dataloader) == VAL_SAMPLES batch = next(iter(train_dataloader)) assert "labels" in batch.keys() assert "input_ids" in batch.keys() assert "attention_mask" in batch.keys() assert batch["labels"][0][EXPECTED_RESULTS[llama_version]["pos"]-1] == -100 assert batch["labels"][0][EXPECTED_RESULTS[llama_version]["pos"]] == EXPECTED_RESULTS[llama_version]["label"] assert batch["input_ids"][0][0] == token.bos_token_id assert batch["labels"][0][-1] == token.eos_token_id assert batch["input_ids"][0][-1] == token.eos_token_id