# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from unittest.mock import patch @patch('llama_recipes.finetuning.train') @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained') @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained') @patch('llama_recipes.finetuning.optim.AdamW') @patch('llama_recipes.finetuning.StepLR') def test_custom_dataset(step_lr, optimizer, tokenizer, get_model, train, mocker): from llama_recipes.finetuning import main tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]}) kwargs = { "batch_size_training": 1, "use_peft": False, "dataset": "samsum_dataset", } main(**kwargs) assert train.call_count == 1 args, kwargs = train.call_args train_dataloader = args[1] eval_dataloader = args[2] VAL_SAMPLES = 818 TRAIN_SAMPLES = 14732 CONCAT_SIZE = 2048 assert len(train_dataloader) == TRAIN_SAMPLES // CONCAT_SIZE assert len(eval_dataloader) == VAL_SAMPLES