# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. # For dataset details visit: https://huggingface.co/datasets/samsum import copy import datasets import itertools from llama_recipes.datasets.utils import Concatenator B_INST, E_INST = "[INST]", "[/INST]" B_SYS, E_SYS = "<>\n", "\n<>\n\n" def tokenize_dialog(dialog, tokenizer): dialog_tokens = [ tokenizer( f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ", ) for prompt, answer in zip(dialog[::2], dialog[1::2]) ] if len(dialog) % 2: dialog_tokens += [tokenizer( f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}", )] combined_tokens = {} for k in dialog_tokens[0].keys(): combined_tokens[k] = list(itertools.chain(*(t[k] for t in dialog_tokens))) return combined_tokens def get_custom_dataset(dataset_config, tokenizer, split): dataset = datasets.load_dataset("OpenAssistant/oasst1", split=split) dataset = dataset.map(lambda sample: { "message_id": sample["message_id"], "parent_id": sample["parent_id"], "text": sample["text"], }, batched=True, remove_columns=list(dataset.features),) nodes = {} messages = {} root_ids = [] for data in dataset: if data["parent_id"]: nodes[data["parent_id"]] = nodes.get(data["parent_id"], []) + [data["message_id"]] else: root_ids.append(data["message_id"]) messages[data["message_id"]]=data["text"] def follow(thread, current_id): thread = copy.copy(thread) + [messages[current_id]] if current_id in nodes: new_threads = [] for next_id in nodes[current_id]: new_threads += follow(thread, next_id) return new_threads else: return [thread] def get_threads_from_root(root_id): all_threads = [] thread = [messages[root_id]] for cid in nodes[root_id]: all_threads += follow(thread, cid) return all_threads dataset = dataset.filter(lambda x: x["message_id"] in root_ids) dataset = dataset.map(lambda x: {"thread": get_threads_from_root(x["message_id"])}, remove_columns=list(dataset.features)) dataset = dataset.map(lambda x: {"thread": [i for row in x["thread"] for i in row]}, batched=True) def to_dialog(thread): dialog = [] for i, content in enumerate(thread): dialog.append({ "role": "user" if i % 2 == 0 else "assistant", "content": content, }) return {"dialog": dialog} dataset = dataset.map(lambda x: to_dialog(x["thread"]), remove_columns=list(dataset.features)) dataset = dataset.map(lambda x: tokenize_dialog(x["dialog"], tokenizer), remove_columns=list(dataset.features)) dataset = dataset.map(Concatenator(), batched=True) return dataset