
11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 1/37

Llama 2 Get Started FAQ Download the Model

Quick setup and how-to guide

Getting started
with Llama

Welcome to the getting started guide for Llama.
This guide provides information and resources to help you set up Llama including how to access the model,
hosting, how-to and integration guides. Additionally, you will find supplemental materials to further assist you while
building with Llama.

https://ai.meta.com/llama/
https://ai.meta.com/llama/get-started/
https://ai.meta.com/llama/faq/
https://ai.meta.com/resources/models-and-libraries/llama-downloads/
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 2/37

Quick setup
Prerequisite
Getting the Models
Hosting

How-to Guides
Fine Tuning
Quantization
Prompting
Inferencing
Validation

Integration Guides
Code Llama
LangChain
LlamaIndex

Community Support
& Resources

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 3/37

Community Support and Resources
a. Github
b. Performance & Latency
c. Fine Tuning
d. Code Llama
e. Others

QUICK SETUP

Prerequisite
1. OS: Ubuntu
2. Packages: wget, md5sum
3. Package Manager: Conda ME

If you want to use Llama 2 on , macOS, iOS, Android or in a Python notebook, please refer to the open source
community on how they have achieved this. Here are some of the resources from open source that you can read more
about: (Repo 1) (Repo 2) (Repo 3).

Getting the Models
1. Visit the Llama download form and accept our License.
2. Once your request is approved, you will receive a signed URL over email.
3. Clone the Llama 2 repository (here).

Windows

https://github.com/facebookresearch/llama-recipes/tree/main/demo_apps
https://github.com/mlc-ai/mlc-llm
https://github.com/ggerganov/llama.cpp
https://ai.meta.com/resources/models-and-libraries/llama-downloads/
https://github.com/facebookresearch/llama
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 4/37

4. Run the download.sh script, passing the URL provided when prompted to start
the download.

a. Keep in mind that the links expire after 24 hours and a certain amount of downloads.
If you start seeing errors such as 403: Forbidden, you can always re-request a link.

Hosting
Amazon Web Services
AWS provides multiple ways to host your Llama models. (SageMaker Jumpstart, EC2, Bedrock etc). In this
document we are going to outline the steps to host your models using SageMaker Jumpstart and Bedrock. You
can refer to other offerings directly on the AWS site.

Bedrock
A fully managed service that offers a choice of high performing foundation models, available via an API, to build
generative AI applications, simplifying development while maintaining privacy and security. You can read more about
the product here and follow instructions to use Llama 2 with Bedrock here.

EC2 Instance
To deploy models on EC2 instances, you must first request access to the model from our Llama download form,
Hugging Face or Kaggle. Once you have this model you can either deploy it on a Deep Learning AMI image that has
both Pytorch and Cuda installed or create your own EC2 instance with GPUs and install all the required
dependencies. For detailed instructions on how to set up your Deep Learning AMI image you can refer here or to set
up your own EC2 instance here.

https://aws.amazon.com/bedrock/
https://aws.amazon.com/bedrock/llama-2/
https://ai.meta.com/resources/models-and-libraries/llama-downloads/
https://huggingface.co/meta-llama
https://www.kaggle.com/models/metaresearch/llama-2
https://docs.aws.amazon.com/dlami/latest/devguide/what-is-dlami.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 5/37

Cloudflare
Workers AI
Is a serverless GPU-powered inference on Cloudflare’s global network. It’s an AI inference as a service platform,
empowering developers to run AI models with just a few lines of code. Learn more about Workers AI here and look at the
documentation here to get started to use Llama 2 models here.

Google Cloud Platform (GCP) - Model Garden
GCP is a suite of cloud computing services that provides computing resources as well as virtual machines.
Building on top of GCP services, Model Garden on Vertex AI offers infrastructure to jumpstart your ML project
with a single place to discover, customize, and deploy a wide range of models. With more than 100 foundation
models available to developers, you can deploy AI models with a few clicks as well as running fine-tuning tasks
in Notebook in Google Colab.

SageMaker JumpStart
Amazon SageMaker enables ML practitioners to build, train and deploy machine learning models for any use case
with fully managed infrastructure, tools and workflows. With SageMaker JumpStart, ML practitioners can choose from
a broad selection of publicly available foundational models and deploy them on SageMaker Instances for model
training and deployments. You can read more about it here.

Vertex AI
We have collaborated with Vertex AI from Google Cloud to fully integrate Llama 2, offering pre-trained, chat and
CodeLlama in various sizes. Getting started from here, note that you may need to request proper GPU computing
quota as a prerequisite.

https://blog.cloudflare.com/workers-ai/
https://developers.cloudflare.com/workers-ai/models/llm/
https://cloud.google.com/model-garden
https://aws.amazon.com/blogs/machine-learning/llama-2-foundation-models-from-meta-are-now-available-in-amazon-sagemaker-jumpstart/
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/139
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 6/37

Hugging Face
You must first request a download using the same email address as your Hugging Face account. After doing
so, you can request access to any of the models on Hugging Face and within 1-2 days your account will be
granted access to all versions.

Kaggle

Kaggle is an online community of data scientists and machine learning engineers. It not only allows users to
find datasets for building their AI models, but also allows users to search and discover hundreds of trained,
ready-to-deploy machine learning models in one place. Moreover, community members can also publish their
innovative works with these models as in Notebooks, backed by Google Cloud AI platform for computing
resources and virtual machines.

We have collaborated with Kaggle to fully integrate Llama 2, offering pre-trained, chat and CodeLlama in
various sizes. To download Llama 2 model artifacts from Kaggle, you must first request a download using the
same email address as your Kaggle account. After doing so, you can request access to Llama 2 and Code
Lama models. You get access to downloads once your request is processed.

Microsoft Azure & Windows
With Microsoft Azure you can access Llama 2 in one of two ways, either by downloading the Llama 2 model
and deploying it on a virtual machine or using Azure Model Catalog.

https://ai.meta.com/resources/models-and-libraries/llama-downloads/
https://huggingface.co/meta-llama
https://ai.meta.com/resources/models-and-libraries/llama-downloads/
https://www.kaggle.com/models/metaresearch/llama-2
https://www.kaggle.com/models/metaresearch/codellama
https://www.kaggle.com/models/metaresearch/codellama
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 7/37

Azure Virtual Machine
To run Llama with an Azure VM, you can set up your own VM or use Azure’s Data Science VM which comes with
Pytorch, CUDA, NVIDIA System Management and other ML tools already installed. To use the Data Science VM,
follow the instructions here to set one up. Make sure to set this VM up with a GPU enabled image. However, if you
would like to set up your own VM, you can follow the quickstart instructions on the Microsoft site here. You can stop at
the “Connect to virtual machine” step. Once you have a VM set up, you can follow the instructions here to access the
models locally on the VM.

Azure Model Catalog

Azure Model Catalog is a hub for exploring collections of foundation models. Built on top of Azure ML platform, Model
Catalog provides options to run ML tasks such as fine-tuning and evaluation with just a few clicks. In general, it is a
good starting point for beginner developers to try out their favorite models and also integrated with powerful tools for
senior developers to build AI applications for production.

We have worked with Azure to fully integrate Llama 2 with Model Catalog, offering both pre-trained chat and
CodeLlama models in various sizes. Please follow the instructions here to get started with.

ONNX for Windows

ONNX is an open format built to represent machine learning models. It defines a common set of operators and a
common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes and
compilers. One of the main advantages of using ONNX is that it allows models to be easily exported from one
framework, such as TensorFlow, and imported into another framework, such as PyTorch.

https://learn.microsoft.com/en-us/azure/machine-learning/data-science-virtual-machine/dsvm-ubuntu-intro?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal?tabs=ubuntu
https://techcommunity.microsoft.com/t5/ai-machine-learning-blog/introducing-llama-2-on-azure/ba-p/3881233
https://onnx.ai/about.html
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 8/37

HOW TO GUIDES

If you are looking to learn by writing code it's highly recommended to look into the Getting to Know Llama 2 -
Jupyter notebook. It's a great place to start with most commonly performed operations on Llama 2.

Fine Tuning
Full parameter fine-tuning is a method that fine-tunes all the parameters of all the layers of the pre-trained model. In general,
it can achieve the best performance but it is also the most resource-intensive and time consuming: it requires most GPU
resources and takes the longest.

PEFT, or Parameter Efficient Fine Tuning, allows one to fine tune models with minimal resources and costs. There are two
important PEFT methods: LoRA (Low Rank Adaptation) and QLoRA (Quantized LoRA), where pre-trained models are
loaded to GPU as quantized 8-bit and 4-bit weights, respectively. It’s likely that you can fine-tune the Llama 2-13B model

Pairing with ONNX runtime, it would accelerate your development with a flexible interface to integrate hardware-
specific libraries and essentially allows you to run ML tasks including inferencing on different platforms such as
Windows easily.

Get started developing applications for Windows/PC with the official ONNX Llama 2 repo here and ONNX runtime
here. Note that, to use the ONNX Llama 2 repo you will need to submit a request to download model artifacts from
sub-repos. This request will be reviewed by the Microsoft ONNX team.

https://github.com/facebookresearch/llama-recipes/blob/main/examples/Getting_to_know_Llama.ipynb
https://github.com/microsoft/Llama-2-Onnx
https://github.com/microsoft/Llama-2-Onnx
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 9/37

using LoRA or QLoRA fine-tuning with a single consumer GPU with 24GB of memory, and using QLoRA requires even less
GPU memory and fine-tuning time than LoRA.

Typically, one should try LoRA, or if resources are extremely limited, QLoRA, first, and after the fine-tuning is done, evaluate
the performance. Only consider full fine-tuning when the performance is not desirable.

Experiment tracking
Experiment tracking is crucial when evaluating various fine-tuning methods like LoRA, and QLoRA. It ensures
reproducibility, maintains a structured version history, allows for easy collaboration, and aids in identifying optimal training
configurations. Especially with numerous iterations, hyperparameters, and model versions at play, tools like Weights &
Biases (W&B)become indispensable. With its seamless integration into multiple frameworks, W&B provides a
comprehensive dashboard to visualize metrics, compare runs, and manage model checkpoints. It's often as simple as
adding a single argument to your training script to realize these benefits - we’ll show an example in the Hugging Face PEFT
LoRA section.

Recipes PEFT LoRA
The llama-recipes repo has details on different fine-tuning (FT) alternatives supported by the provided sample scripts. In
particular, it highlights the use of PEFT as the preferred FT method, as it reduces the hardware requirements and prevents
catastrophic forgetting. For specific cases, full parameter FT can still be valid, and different strategies can be used to still
prevent modifying the model too much. Additionally, FT can be done in single gpu or multi-gpu with FSDP.

In order to run the recipes, follow the steps below:

1. Create a conda environment with pytorch and additional dependencies
2. Install the recipes as described here.

https://wandb.ai/
https://wandb.ai/
https://github.com/facebookresearch/llama-recipes/blob/main/docs/LLM_finetuning.md
https://github.com/facebookresearch/llama-recipes/blob/main/docs/single_gpu.md
https://github.com/facebookresearch/llama-recipes/blob/main/docs/multi_gpu.md
https://github.com/facebookresearch/llama-recipes#install-with-pip
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 10/37

3. Download the desired model from hf, either using git-lfs or using the llama download script.
4. With everything configured, run the following command:

python -m llama_recipes.finetuning --use_peft --peft_method
lora --quantization --model_name ../llama/models_hf/7B --output_dir ../llama/models_ft/7B-
--batch_size_training 2 --gradient_accumulation_steps 2

Hugging Face PEFT LoRA (link)
Using Low Rank Adaption (LoRA) , Llama 2 is loaded to the GPU memory as quantized 8-bit weights.

Using the Hugging Face Fine-tuning with PEFT LoRA is super easy - an example fine-tuning run on Llama 2-7b using the
OpenAssistant data set can be done in three simple steps:

pip install trl
git clone https://github.com/huggingface/trl
python trl/examples/scripts/sft.py \
--model_name meta-llama/Llama-2-7b-hf \
--dataset_name timdettmers/openassistant-guanaco \
--load_in_4bit \
--use_peft \
--batch_size 4 \ --gradient_accumulation_steps 2 \
--log_with wandb

https://github.com/huggingface/peft
https://huggingface.co/blog/llama2#fine-tuning-with-peft
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 11/37

This takes about 16 hours on a single GPU and uses less than 10GB GPU memory; changing batch size to 8/16/32 will use
over 11/16/25 GB GPU memory. After the fine-tuning completes, you’ll see in a new directory named “output” at least
adapter_config.json and adapter_model.bin - run the script below to infer with the base model and the new model,
generated by merging the base model with the fined-tuned one:

import torch
from transformers import (AutoModelForCausalLM, AutoTokenizer,
pipeline,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer

model_name = "meta-llama/Llama-2-7b-chat-hf"
new_model = "output"
device_map = {"": 0}

base_model = AutoModelForCausalLM.from_pretrained(model_name,
low_cpu_mem_usage=True,
return_dict=True,

torch_dtype=torch.float16,
device_map=device_map,
)

model = PeftModel.from_pretrained(base_model, new_model)
model = model.merge_and_unload()

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"

prompt = "Who wrote the book Innovator's Dilemma?"

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 12/37

QLoRA Fine Tuning
QLoRA (Q for quantized) is more memory efficient than LoRA. In QLoRA, the pretrained model is loaded to the GPU as
quantized 4-bit weights. Fine-tuning using QLoRA is also very easy to run - an example of fine-tuning Llama 2-7b with the
OpenAssistant can be done in four quick steps:

It takes about 6.5 hours to run on a single GPU, using 11GB memory of the GPU. After the fine-tuning completes and the
output_dir specified in ./scripts/finetune_llama2_guanaco_7b.sh will have checkoutpoint-xxx subfolders, holding the fine-
tuned adapter model files. To run inference, use the script below:

pipe = pipeline(task="text-generation", model=base_model, tokenizer=tokenizer, max_length=
result = pipe(f"<s>[INST] {prompt} [/INST]")
print(result[0]['generated_text'])

pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
result = pipe(f"<s>[INST] {prompt} [/INST]")
print(result[0]['generated_text'])

git clone https://github.com/artidoro/qlora
cd qlora
pip install -U -r requirements.txt ./scripts/finetune_llama2_guanaco_7b.sh

import torch

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 13/37

Axolotl is another open source library you can use to streamline the fine-tuning of Llama 2. A good example of using Axolotl
to fine-tune Llama 2 with four notebooks covering the whole fine-tuning process (generate the dataset, fine-tune the model
using LoRA, evaluate and benchmark) is here.

Quantization

model_id = "meta-llama/Llama-2-7b-hf"
new_model = "output/llama-2-guanaco-7b/checkpoint-1875/adapter_model" # change if needed
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
low_cpu_mem_usage=True,
load_in_4bit=True,
quantization_config=quantization_config,
torch_dtype=torch.float16,
device_map='auto'
)
model = PeftModel.from_pretrained(model, new_model)
tokenizer = AutoTokenizer.from_pretrained(model_id)

prompt = "Who wrote the book innovator's dilemma?"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
result = pipe(f"<s>[INST] {prompt} [/INST]") print(result[0]['generated_text'])

https://github.com/OpenAccess-AI-Collective/axolotl
https://github.com/OpenPipe/OpenPipe/tree/main/examples/classify-recipes
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 14/37

Quantization is a technique to represent the model weights which are usually in 32-bit floating numbers with lower precision
data such as 16-bit float, 16-bit int, 8-bit int, or even 4/3/2-bit int. The benefits of quantization include smaller model size,
faster fine-tuning and faster inference. In resource-constrained environments such as single-GPU or Mac or mobile edge
devices (e.g. https://github.com/ggerganov/llama.cpp), quantization is a must in order to fine-tune the model or run the
inference. More information about quantization is available here & here.

Prompting
Prompt engineering is a technique used in natural language processing (NLP) to improve the performance of the language
model by providing them with more context and information about the task in hand. It involves creating prompts, which are
short pieces of text that provide additional information or guidance to the model, such as the topic or genre of the text it will
generate. By using prompts, the model can better understand what kind of output is expected and produce more accurate
and relevant results. In Llama 2 the size of the context, in terms of number of tokens, has doubled from 2048 to 4096.

Crafting Effective Prompts

Crafting effective prompts is an important part of prompt engineering. Here are some tips for creating prompts that will help
improve the performance of your language model:

1. Be clear and concise: Your prompt should be easy to understand and provide enough information for the model to
generate relevant output. Avoid using jargon or technical terms that may confuse the model.

2. Use specific examples: Providing specific examples in your prompt can help the model better understand what
kind of output is expected. For example, if you want the model to generate a story about a particular topic, include a

https://github.com/ggerganov/llama.cpp
https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
https://huggingface.co/docs/optimum/concept_guides/quantization
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 15/37

few sentences about the setting, characters, and plot.

3. Vary the prompts: Using different prompts can help the model learn more about the task at hand and produce more
diverse and creative output. Try using different styles, tones, and formats to see how the model responds.

4. Test and refine: Once you have created a set of prompts, test them out on the model to see how it performs. If the
results are not as expected, try refining the prompts by adding more detail or adjusting the tone and style.

5. Use feedback: Finally, use feedback from users or other sources to continually improve your prompts. This can help
you identify areas where the model needs more guidance and make adjustments accordingly.

Role Based Prompts

Creating prompts based on the role or perspective of the person or entity being addressed. This technique can be useful for
generating more relevant and engaging responses from language models.

Pros:

1. Improves relevance: Role-based prompting helps the language model understand the role or perspective of the
person or entity being addressed, which can lead to more relevant and engaging responses.

2. Increases accuracy: Providing additional context about the role or perspective of the person or entity being
addressed can help the language model avoid making mistakes or misunderstandings.

Cons:

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 16/37

1. Requires effort: Requires more effort to gather and provide the necessary information about the role or perspective
of the person or entity being addressed.

Example:

You are a virtual tour guide currently walking the tourists Eiffel Tower on a night tour. Describe Eiffel Tower to
your audience that covers its history, number of people visiting each year, amount of time it takes to do a full
tour and why do so many people visit this place each year.

Chain of Thought Technique

Involves providing the language model with a series of prompts or questions to help guide its thinking and generate a more
coherent and relevant response. This technique can be useful for generating more thoughtful and well-reasoned responses
from language models.

Pros:

1. Improves coherence: Helps the language model think through a problem or question in a logical and structured
way, which can lead to more coherent and relevant responses.

2. Increases depth: Providing a series of prompts or questions can help the language model explore a topic more

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 17/37

deeply and thoroughly, potentially leading to more insightful and informative responses.

Cons:

1. Requires effort: The chain of thought technique requires more effort to create and provide the necessary prompts
or questions.

Reduce Hallucinations

Example:

You are a virtual tour guide from 1901. You have tourists visiting Eiffel Tower. Describe Eiffel Tower to your
audience. Begin with
1. Why it was built
2. Then by how long it took them to build
3. Where were the materials sourced to build
4. Number of people it took to build
5. End it with the number of people visiting the Eiffel tour annually in the 1900's, the amount of time it
completes a full tour and why so many people visit this place each year.
Make your tour funny by including 1 or 2 funny jokes at the end of the tour.

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 18/37

Meta’s Responsible Use Guide is a great resource to understand how best to prompt and address input/output risks of the
language model. Refer to pages (14-17).

Here are some examples of how a language model might hallucinate and some strategies for fixing the issue:

Example 1:
A language model is asked to generate a response to a question about a topic it has not been trained on. The language
model may hallucinate information or make up facts that are not accurate or supported by evidence.

Example 2:
A language model is asked to generate a response to a question that requires a specific perspective or point of view. The
language model may hallucinate information or make up facts that are not consistent with the desired perspective or point of
view.

Example 3:

Fix: To fix this issue, you can provide the language model with more context or information about the topic to help it
understand what is being asked and generate a more accurate response. You could also ask the language model
to provide sources or evidence for any claims it makes to ensure that its responses are based on factual
information.

Fix: To fix this issue, you can provide the language model with additional information about the desired perspective or
point of view, such as the goals, values, or beliefs of the person or entity being addressed. This can help the language
model understand the context and generate a response that is more consistent with the desired perspective or point of
view.

https://ai.meta.com/static-resource/responsible-use-guide/
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 19/37

A language model is asked to generate a response to a question that requires a specific tone or style. The language model
may hallucinate information or make up facts that are not consistent with the desired tone or style.

Overall, the key to avoiding hallucination in language models is to provide them with clear and accurate information and
context, and to carefully monitor their responses to ensure that they are consistent with your expectations and requirements.

Prompting with Llama

Fix: To fix this issue, you can provide the language model with additional information about the desired tone or style,
such as the audience or purpose of the communication. This can help the language model understand the context and
generate a response that is more consistent with the desired tone or style.

Format

<s>[INST]
{{ user_message }} [/INST]

Multi Turn User Prompt

<s>[INST]
{{ user_message_1 }} [/INST] {{ llama_answer_1 }} </s><s>[INST] {{ user_message_2 }} [/INST

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 20/37

Inferencing
Here are some great resources to get started with Inferencing with your LLMs.

Llama Recipes

Page Attention vLLM

Hugging Face TGI

Github Llama recipes

Learn more Recipe examples

Learn more Recipe examples

https://github.com/facebookresearch/llama-recipes/blob/main/docs/inference.md
https://vllm.ai/
https://github.com/facebookresearch/llama-recipes/blob/main/examples/vllm/inference.py
https://github.com/huggingface/text-generation-inference
https://github.com/facebookresearch/llama-recipes/tree/main/examples/hf_text_generation_inference
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 21/37

Validation
As the saying goes, if you can't measure it, you can't improve it. In this section, we are going to cover different
ways to measure and ultimately validate Llama so it's possible to determine the improvements provided by
different fine tuning techniques.

Quantitative techniques
The focus of these techniques is to gather objective metrics that can be compared easily during and after each fine tuning
run, to provide quick feedback on whether the model is performing. The main metrics collected are loss and perplexity.

K-Fold Cross-Validation
This method consists in dividing the dataset into k subsets or folds, and then fine tuning the model k times. On each run, a
different fold is used as a validation dataset, using the rest for training. The performance results of each run are averaged
out for the final report. This provides a more accurate metric of the performance of the model across the complete dataset,
as all entries serve both for validation and training. While it produces the most accurate prediction on how a model is going
to generalize after fine tuning on a given dataset, it is computationally expensive and better suited for small datasets.

Holdout
When using a holdout, the dataset is split into two or three subsets, training and validation with test as optional. The test and
validation sets can represent 10% - 30% of the dataset each. As the name implies, the first two subsets are used for training

Cuda Graphs

Learn more

https://blog.fireworks.ai/speed-python-pick-two-how-cuda-graphs-enable-fast-python-code-for-deep-learning-353bf6241248
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 22/37

and validating the model during fine tuning, while the third is used only after fine tuning is complete to evaluate how well the
model generalizes on data it has not seen in either phase. The advantage of having three partitions is that it provides a way
to evaluate the model after fine-tuning for an unbiased view into the model performance, but it requires a slightly bigger
dataset to allow for a proper split. This is currently implemented in the Llama recipes fine tuning script with two subsets of
the dataset, train and validation. The data is collected in a json file that can be plotted to easily interpret the results and
evaluate how the model is performing.

Standard Evaluation tools

There are multiple projects that provide standard evaluation. They provide predefined tasks with commonly used metrics to
evaluate the performance of LLMs, like HellaSwag and ThrouthfulQA. These tools can be used to test if the model has
degraded after fine tuning. Additionally, a custom task can be created using the dataset intended to fine-tune the

model, effectively automating the manual verification of the model performance before and after fine tuning. These types of
projects provide a quantitative way of looking at the models performance in simulated real world examples. Some of these
projects include the LM Evaluation Harness (used to create the HF leaderboard), HELM, BIG-bench and OpenCompass.

Interpreting Loss and Perplexity

The loss value used comes from the transformer's LlamaForCausalLM, which initializes a different loss function depending
on the objective required from the model. The objective of this section is to give a brief overview on how to understand the
results from loss and perplexity as an initial evaluation of the model performance during fine tuning. We also calculate the
perplexity as an exponentiation of the loss value. Additional information on loss functions can be found in these resources:
1, 2, 3, 4, 5, 6.

In our recipes, we use a simple holdout during fine tuning. Using the logged loss values, both for train and validation
dataset, the curves for both are plotted to analyze the results of the process. Given the setup in the recipe, the expected
behavior is a log graph that shows a diminishing train and validation loss value as it progresses.

https://github.com/facebookresearch/llama-recipes/blob/main/src/llama_recipes/finetuning.py#L165
https://github.com/facebookresearch/llama-recipes/blob/main/src/llama_recipes/finetuning.py#L174
https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://github.com/stanford-crfm/helm
https://github.com/google/BIG-bench
https://github.com/open-compass/opencompass
https://huggingface.co/docs/transformers/main/model_doc/llama#transformers.LlamaForCausalLM
https://towardsdatascience.com/what-is-loss-function-1e2605aeb904
https://towardsdatascience.com/importance-of-loss-function-in-machine-learning-eddaaec69519
https://towardsdatascience.com/understanding-what-we-lose-b91e114e281b
https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss
https://developers.google.com/machine-learning/testing-debugging/metrics/interpretic
https://en.wikipedia.org/wiki/Loss_function
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 23/37

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 24/37

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 25/37

If the validation curve starts going up while the train curve continues decreasing, the model is overfitting and it's not
generalizing well. Some alternatives to test when this happens are early stopping, verifying the validation dataset is a
statistically significant equivalent of the train dataset, data augmentation, using parameter efficient fine tuning or using k-fold
cross-validation to better tune the hyperparameters.

Qualitative techniques

Manual testing

Manually evaluating a fine tuned model will vary according to the FT objective and available resources. Here we provide
general guidelines on how to accomplish it.

With a dataset prepared for fine tuning, a part of it can be separated into a manual test subset, which can be further
increased with general knowledge questions that might be relevant to the specific use case. In addition to these general
questions, we recommend executing standard evaluations as well, and compare the results with the baseline for the fine
tuned model.

To rate the results, a clear evaluation criteria should be defined that is relevant to the dataset being used. Example criteria
can be accuracy, coherence and safety. Create a rubric for each criteria and define what would be required for an output to
receive a specific score.

With these guidelines in place, distribute the test questions with a diverse set of reviewers to have multiple data points for
each question. With multiple data points for each question and different criteria, a final score can be calculated for each
query, allowing for weighting the scores based on the preferred focus for the final model.

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 26/37

INTEGRATION GUIDES

Code Llama is an open-source family of LLMs based on Llama 2 providing SOTA performance on code tasks. It consists of:

Code Llama

Foundation models (Code Llama)
Python specializations (Code Llama - Python), and
Instruction-following models (Code Llama - Instruct)with 7B, 13B and 34B parameters each.

https://about.fb.com/news/2023/08/code-llama-ai-for-coding/
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 27/37

LangChain is an open source framework for building LLM powered applications. It implements common abstractions and
higher-level APIs to make the app building process easier, so you don't need to call LLM from scratch. The main building
blocks/APIs of LangChain are:

One of the best ways to try out and integrate with Code Llama is using Hugging Face ecosystem by following the blog,
which has:

If the model does not perform well on your specific task, for example if none of the Code Llama models (7B/13B/34B)
generate the correct answer for a text to SQL task, fine-tuning should be considered. This is a complete guide and notebook
on how to fine-tune Code Llama using the 7B model hosted on Hugging Face. It uses the LoRA fine-tuning method and can
run on a single GPU.As shown in the Code Llama References (here), fine-tuning improves the performance of Code Llama
on SQL code generation, and it can be critical that LLMs are able to interoperate with structured data and SQL, the primary
way to access structured data - we are developing demo apps in LangChain and RAG with Llama 2 to show this.

The different stages of fine-tuning annotated with the number of tokens seen during training. Source

Demo links for Code Llama 13B, 13B-Instruct (chat), and 34B.
Working inference code for code completion
Working inference code for code infilling between code prefix and suffix as inputs
Working inference code to do 4-bit loading of the 32B model so it can fit on consumer GPUs
Guide on how to write prompts for the instruction models to have multi-turn conversations about coding
Guide on how to use Text Generation Inference for model deployment in production
Guide on how to integrate code autocomplete as an extension with VSCode
Guide on how to evaluate Code Llama models

LangChain

https://www.langchain.com/
https://huggingface.co/blog/codellama
https://github.com/samlhuillier/code-llama-fine-tune-notebook/blob/main/fine-tune-code-llama.ipynb
https://www.snowflake.com/blog/meta-code-llama-testing/
https://scontent-sjc3-1.xx.fbcdn.net/v/t39.2365-6/369856151_1754812304950972_1159666448927483931_n.pdf?_nc_cat=107&ccb=1-7&_nc_sid=3c67a6&_nc_ohc=udX9ICnwVPUAX8UI1Y0&_nc_ht=scontent-sjc3-1.xx&oh=00_AfBPtxYFOcVF11hd5fpdJCFs8oHjQQ609aXqjveMPRBFVg&oe=6516394F
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 28/37

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 29/37

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 30/37

Source

Source

https://medium.com/@murtuza753/using-llama-2-0-faiss-and-langchain-for-question-answering-on-your-own-data-682241488476
https://learn.deeplearning.ai/langchain/lesson/1/introduction
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 31/37

The Models or LLMs API can be used to easily connect to all popular LLMs such as Hugging Face or Replicate where all
types of Llama 2 models are hosted.

The Prompts API implements the useful prompt template abstraction to help you easily reuse good, often long and
detailed, prompts when building sophisticated LLM apps. There are also many built-in prompts for common operations
such as summarization or connection to SQL databases for quick app development. Prompts can also work closely with
parsers to easily extract useful information from the LLM output.

The Memory API can be used to save conversation history and feed it along with new questions to LLM so multi-turn
natural conversation chat can be implemented.

The Chains API includes the most basic LLMChain that combines a LLM with aprompt to generate the output, as well
as more advanced chains to lets you build sophisticated LLM apps in a systematic way. For example, the output of the
first LLM chain can be the input/prompt of another chain, or a chain can have multiple inputs and/or multiple outputs,
either pre-defined or dynamically decided by the LLM output of a prompt.

The Indexes API allows documents outside of LLM to be saved, after first converted to embeddings which are
numerical meaning representations, in the vector form, of the documents, to a vector store. Later when a user enters a
question about the documents, the relevant data stored in the documents' vector store will be retrieved and sent, along
with the query, to LLM to generate an answer related to the documents. The following flow shows the process:

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 32/37

LangChain can be used as a powerful retrieval augmented generation (RAG) tool to integrate the internal data or more
recent public data with LLM to QA or chat about the data. LangChain already supports loading many types of unstructured
and structured data.

Source

The Agents API uses LLM as the reasoning engine and connects it with other sources of data, third-party or own tools,
or APIs such as web search or wikipedia APIs. Depending on the user's input, the agent can decide which tool to call to
handle the input.

https://learn.deeplearning.ai/langchain-chat-with-your-data/lesson/2/document-loading
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 33/37

To learn more about LangChain, enroll for free in the two LangChain short courses. Be aware that the code in the courses
use OpenAI ChatGPT LLM, but we've published a series of demo apps using LangChain with Llama 2.

There is also a Getting to Know Llama notebook, presented at Meta Connect 2023.

LlamaIndex
LlamaIndex is another popular open source framework for building LLM applications. Like LangChain, LlamaIndex can also
be used to build RAG applications by easily integrating data not built-in the LLM with LLM. There are three key tools in
LlamaIndex:

Return data-augmented answer

LlamaIndex is mainly a data framework for connecting private or domain-specific data with LLMs, so it specializes in RAG,
smart data storage and retrieval, while LangChain is a more general purpose framework which can be used to build agents
connecting multiple tools. The integration of the two may provide the best performant and effective solution to building real
world RAG powered Llama apps.

For an example usage of how to integrate LlamaIndex with Llama 2, see here. We also published a completed demo app
showing how to use LlamaIndex to chat with Llama 2 about live data via the you.com API.

Connecting Data: connect data of any type - structured, unstructured or semi-structured - to LLM
Indexing Data: Index and store the data
Querying LLM: Combine the user query and retrieved query-related data to queryLLM and return data-augmented
answer

https://www.deeplearning.ai/short-courses
https://github.com/facebookresearch/llama-recipes/tree/main/demo_apps
https://github.com/facebookresearch/llama-recipes/blob/main/examples/Getting_to_know_Llama.ipynb
https://github.com/run-llama/llama_index#-example-usage
https://github.com/facebookresearch/llama-recipes/blob/main/demo_apps/LiveData.ipynb
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 34/37

It’s worth noting that LlamaIndex has implemented many RAG powered LLM evaluation tools to easily measure the quality
of retrieval and response, including:

COMMUNITY SUPPORT AND RESOURCES

Community Support
If you have any feature requests, suggestions, bugs to report we encourage you to report the issue in the respective github
repository. If you are working in partnership with Meta on Llama 2 please request access to Asana and report any issues
using Asana.

Resources

Github

Question Generation: Call LLM to auto generate questions to create an evaluation dataset.
FaithfulnessEvaluator: Evaluate if the generated answer is faithful to the retrieved context or if there’s hallucination.
CorrectnessEvaluator: Evaluate if the generated answer matches the reference answer.
RelevancyEvaluator: Evaluate if the answer and the retrieved context is relevant and consistent for the given query.

https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 35/37

Performance & Latency

Fine Tuning

Code Llama

Llama 2 Repository : Main Llama 2 repository
Llama 2 Recipes : Examples and fine tuning
Code Llama Repository : Main Code Llama repository
Getting to know Llama 2 - Jupyter Notebook
Code Llama Recipes : Examples

Hamel’s Blog - Optimizing and testing latency for LLMs
vLLM - How continuous batching enables 23x throughput in LLM inference while reducing p50 latency
Paper - Improving performance of compressed LLMs with prompt engineering
Llama2 vs GPT 4 Cost comparison for text summarization

Hugging Face PEFT
Llama Recipes Fine Tuning
Fine Tuning Data Sets
GPT 3.5 vs Llama 2 fine-tuning
How to Fine-tune Llama 2 with LoRA for Question Answering
Efficient Fine-Tuning with LoRA
Weights & Biases Training and Fine-tuning Large Language Models

Fine-Tuning Improves the Performance of Meta’s Code Llama on SQL Code Generation
Beating GPT-4 on HumanEval with a Fine-Tuned CodeLlama-34B
Introducing Code Llama, a state-of-the-art large language model for coding

https://github.com/facebookresearch/llama
https://github.com/facebookresearch/llama-recipes
https://github.com/facebookresearch/codellama
https://github.com/facebookresearch/llama-recipes/blob/main/examples/Getting_to_know_Llama.ipynb
https://github.com/facebookresearch/llama-recipes/tree/main/examples/code_llama
https://hamel.dev/notes/llm/inference/03_inference.html
https://www.anyscale.com/blog/continuous-batching-llm-inference
https://arxiv.org/pdf/2305.11186.pdf
https://www.anyscale.com/blog/llama-2-is-about-as-factually-accurate-as-gpt-4-for-summaries-and-is-30x-cheaper
https://github.com/huggingface/peft
https://github.com/facebookresearch/llama-recipes/blob/main/docs/LLM_finetuning.md
https://github.com/facebookresearch/llama-recipes/blob/main/docs/Dataset.md
https://ragntune.com/blog/gpt3.5-vs-llama2-finetuning
https://deci.ai/blog/fine-tune-llama-2-with-lora-for-question-answering/
https://www.databricks.com/blog/efficient-fine-tuning-lora-guide-llms
https://www.wandb.courses/courses/training-fine-tuning-LLMs
https://www.snowflake.com/blog/meta-code-llama-testing/
https://www.phind.com/blog/code-llama-beats-gpt4
https://news.ycombinator.com/item?id=37248494
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 36/37

Others

We value your feedback
Help us improve Llama by submitting feedback, suggestions, or reporting bugs.

Llama on Hugging Face
Building LLM applications for production
Prompting Techniques

Submit feedback

Who We Are

About
People

Latest Work

Research
Infrastructure

https://huggingface.co/meta-llama
https://huyenchip.com/2023/04/11/llm-engineering.html
https://www.promptingguide.ai/
mailto:llama-feedback@meta.com
https://ai.meta.com/about
https://ai.meta.com/about
https://ai.facebook.com/results/?content_types%5B0%5D=person&sort_by=random
https://ai.meta.com/blog
https://ai.meta.com/research
https://ai.meta.com/infrastructure
https://www.facebook.com/aiatmeta/
https://twitter.com/aiatmeta/
https://www.linkedin.com/showcase/aiatmeta
https://www.youtube.com/@aiatmeta
https://ai.meta.com/

11/8/23, 2:00 PM Getting started with Llama 2 - AI at Meta

https://ai.meta.com/llama/get-started/ 37/37

Meta © 2023

Careers
Events

Blog
Resources

Our Actions

Responsibilities

Newsletter

Sign Up

Privacy Policy Terms Cookies

https://www.metacareers.com/jobs/?is_leadership=0&sub_teams[0]=Artificial%20Intelligence&is_in_page=0
https://ai.meta.com/events
https://ai.meta.com/blog
https://ai.meta.com/resources
https://ai.meta.com/responsible-ai
https://ai.meta.com/responsible-ai
https://ai.meta.com/subscribe
https://ai.meta.com/subscribe
https://www.facebook.com/about/privacy/
https://www.facebook.com/policies/
https://www.facebook.com/policies/cookies/
https://ai.meta.com/

