# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from dataclasses import dataclass @dataclass class train_config: model_name: str="PATH/to/LLAMA/7B" enable_fsdp: bool=False low_cpu_fsdp: bool=False run_validation: bool=True batch_size_training: int=4 batching_strategy: str="packing" #alternative: padding context_length: int=4096 gradient_accumulation_steps: int=1 gradient_clipping: bool = False gradient_clipping_threshold: float = 1.0 num_epochs: int=3 num_workers_dataloader: int=1 lr: float=1e-4 weight_decay: float=0.0 gamma: float= 0.85 seed: int=42 use_fp16: bool=False mixed_precision: bool=True val_batch_size: int=1 dataset = "samsum_dataset" peft_method: str = "lora" # None , llama_adapter, prefix use_peft: bool=False output_dir: str = "PATH/to/save/PEFT/model" freeze_layers: bool = False num_freeze_layers: int = 1 quantization: bool = False one_gpu: bool = False save_model: bool = True dist_checkpoint_root_folder: str="PATH/to/save/FSDP/model" # will be used if using FSDP dist_checkpoint_folder: str="fine-tuned" # will be used if using FSDP save_optimizer: bool=False # will be used if using FSDP use_fast_kernels: bool = False # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels save_metrics: bool = False # saves training metrics to a json file for later plotting