# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from tqdm import tqdm from itertools import chain from torch.utils.data import Dataset class Concatenator(object): def __init__(self, chunk_size=2048): self.chunk_size=chunk_size self.residual = {"input_ids": [], "attention_mask": []} def __call__(self, batch): concatenated_samples = { k: v + list(chain(*batch[k])) for k, v in self.residual.items() } total_length = len(concatenated_samples[list(concatenated_samples.keys())[0]]) if total_length >= self.chunk_size: chunk_num = total_length // self.chunk_size result = { k: [ v[i : i + self.chunk_size] for i in range(0, chunk_num * self.chunk_size, self.chunk_size) ] for k, v in concatenated_samples.items() } self.residual = { k: v[(chunk_num * self.chunk_size) :] for k, v in concatenated_samples.items() } else: result = concatenated_samples self.residual = {k: [] for k in concatenated_samples.keys()} result["labels"] = result["input_ids"].copy() return result class ConcatDataset(Dataset): def __init__(self, dataset, chunk_size=4096): self.dataset = dataset self.chunk_size = chunk_size self.samples = [] buffer = { "input_ids": [], "attention_mask": [], "labels": [], } for sample in tqdm(self.dataset, desc="Preprocessing dataset"): buffer = {k: v + sample[k] for k,v in buffer.items()} while len(next(iter(buffer.values()))) > self.chunk_size: self.samples.append({k: v[:self.chunk_size] for k,v in buffer.items()}) buffer = {k: v[self.chunk_size:] for k,v in buffer.items()} def __getitem__(self, idx): return self.samples[idx] def __len__(self): return len(self.samples)