# Fine-tuning with Multi GPU To run fine-tuning on multi-GPUs, we will make use of two packages: 1. [PEFT](https://huggingface.co/blog/peft) methods and in particular using the Hugging Face [PEFT](https://github.com/huggingface/peft)library. 2. [FSDP](https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html) which helps us parallelize the training over multiple GPUs. [More details](LLM_finetuning.md/#2-full-partial-parameter-finetuning). Given the combination of PEFT and FSDP, we would be able to fine tune a Llama 2 model on multiple GPUs in one node or multi-node. ## Requirements To run the examples, make sure to install the requirements using ```bash pip install -r requirements.txt ``` **Please note that the above requirements.txt will install PyTorch 2.0.1 version, in case you want to run FSDP + PEFT, please make sure to install PyTorch nightlies.** ## How to run it Get access to a machine with multiple GPUs ( in this case we tested with 4 A100 and A10s). This runs with the `samsum_dataset` for summarization application by default. **Multiple GPUs one node**: **NOTE** please make sure to use PyTorch Nightlies for using PEFT+FSDP. Also, note that int8 quantization from bit&bytes currently is not supported in FSDP. ```bash torchrun --nnodes 1 --nproc_per_node 4 ../llama_finetuning.py --enable_fsdp --model_name /patht_of_model_folder/7B --use_peft --peft_method lora --output_dir Path/to/save/PEFT/model ``` The args used in the command above are: * `--enable_fsdp` boolean flag to enable FSDP in the script * `--use_peft` boolean flag to enable PEFT methods in the script * `--peft_method` to specify the PEFT method, here we use `lora` other options are `llama_adapter`, `prefix`. We use `torchrun` here to spawn multiple processes for FSDP. ### Fine-tuning using FSDP Only If interested in running full parameter finetuning without making use of PEFT methods, please use the following command. Make sure to change the `nproc_per_node` to your available GPUs. This has been tested with `BF16` on 8xA100, 40GB GPUs. ```bash torchrun --nnodes 1 --nproc_per_node 8 llama_finetuning.py --enable_fsdp --model_name /patht_of_model_folder/7B --dist_checkpoint_root_folder model_checkpoints --dist_checkpoint_folder fine-tuned --pure_bf16 ``` **Multi GPU multi node**: Here we use a slurm script to schedule a job with slurm over multiple nodes. ```bash sbatch multi_node.slurm # Change the num nodes and GPU per nodes in the script before running. ``` ## How to run with different datasets? Currently 4 datasets are supported that can be found in [Datasets config file](../configs/datasets.py). * `grammar_dataset` : use this [notebook](../ft_datasets/grammar_dataset/grammar_dataset_process.ipynb) to pull and process theJfleg and C4 200M datasets for grammar checking. * `alpaca_dataset` : to get this open source data please download the `aplaca.json` to `ft_dataset` folder. ```bash wget -P ft_dataset https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json ``` * `samsum_dataset` To run with each of the datasets set the `dataset` flag in the command as shown below: ```bash # grammer_dataset torchrun --nnodes 1 --nproc_per_node 4 ../llama_finetuning.py --enable_fsdp --model_name /patht_of_model_folder/7B --use_peft --peft_method lora --dataset grammar_dataset --save_model --dist_checkpoint_root_folder model_checkpoints --dist_checkpoint_folder fine-tuned --pure_bf16 --output_dir Path/to/save/PEFT/model # alpaca_dataset torchrun --nnodes 1 --nproc_per_node 4 ../llama_finetuning.py --enable_fsdp --model_name /patht_of_model_folder/7B --use_peft --peft_method lora --dataset alpaca_dataset --save_model --dist_checkpoint_root_folder model_checkpoints --dist_checkpoint_folder fine-tuned --pure_bf16 --output_dir Path/to/save/PEFT/model # samsum_dataset torchrun --nnodes 1 --nproc_per_node 4 ../llama_finetuning.py --enable_fsdp --model_name /patht_of_model_folder/7B --use_peft --peft_method lora --dataset samsum_dataset --save_model --dist_checkpoint_root_folder model_checkpoints --dist_checkpoint_folder fine-tuned --pure_bf16 --output_dir Path/to/save/PEFT/model ``` ## Where to configure settings? * [Training config file](../configs/training.py) is the main config file that helps to specify the settings for our run and can be found in [configs folder](../configs/) It lets us specify the training settings for everything from `model_name` to `dataset_name`, `batch_size` and so on. Below is the list of supported settings: ```python model_name: str="PATH/to/LLAMA 2/7B" enable_fsdp: bool= False run_validation: bool=True batch_size_training: int=4 num_epochs: int=3 num_workers_dataloader: int=2 lr: float=2e-4 weight_decay: float=0.0 gamma: float= 0.85 use_fp16: bool=False mixed_precision: bool=True val_batch_size: int=4 dataset = "samsum_dataset" # alpaca_dataset, grammar_dataset micro_batch_size: int=1 peft_method: str = "lora" # None , llama_adapter, prefix use_peft: bool=False output_dir: str = "./ft-output" freeze_layers: bool = False num_freeze_layers: int = 1 quantization: bool = False save_model: bool = False dist_checkpoint_root_folder: str="model_checkpoints" dist_checkpoint_folder: str="fine-tuned" save_optimizer: bool=False ``` * [Datasets config file](../configs/datasets.py) provides the available options for datasets. * [peft config file](../configs/peft.py) provides the supported PEFT methods and respective settings that can be modified. * [FSDP config file](../configs/fsdp.py) provides FSDP settings such as: * `mixed_precision` boolean flag to specify using mixed precision, defatults to true. * `use_fp16` boolean flag to specify using FP16 for mixed precision, defatults to False. We recommond not setting this flag, and only set `mixed_precision` that will use `BF16`, this will help with speed and memory savings while avoiding challenges of scaler accuracies with `FP16`. * `sharding_strategy` this specifies the sharding strategy for FSDP, it can be: * `FULL_SHARD` that shards model parameters, gradients and optimizer states, results in the most memory savings. * `SHARD_GRAD_OP` that shards gradinets and optimizer states and keeps the parameters after the first `all_gather`. This reduces communication overhead specially if you are using slower networks more specifically beneficial on multi-node cases. This comes with the trade off of higher memory consumption. * `NO_SHARD` this is equivalent to DDP, does not shard model parameters, gradinets or optimizer states. It keeps the full parameter after the first `all_gather`. * `HYBRID_SHARD` available on PyTorch Nightlies. It does FSDP within a node and DDP between nodes. It's for multi-node cases and helpful for slower networks, given your model will fit into one node. * `checkpoint_type` specifies the state dict checkpoint type for saving the model. `FULL_STATE_DICT` streams state_dict of each model shard from a rank to CPU and assembels the full state_dict on CPU. `SHARDED_STATE_DICT` saves one checkpoint per rank, and enables the re-loading the model in a different world size. * `fsdp_activation_checkpointing` enables activation checkpoining for FSDP, this saves significant amount of memory with the trade off of recomputing itermediate activations during the backward pass. The saved memory can be re-invested in higher batch sizes to increase the throughput. We recommond you use this option. * `pure_bf16` it moves the model to `BFloat16` and if `optimizer` is set to `anyprecision` then optimizer states will be kept in `BFloat16` as well. You can use this option if necessary.