# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. from unittest.mock import patch @patch('llama_recipes.finetuning.train') @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained') # @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained') @patch('llama_recipes.finetuning.optim.AdamW') @patch('llama_recipes.finetuning.StepLR') def test_samsum_dataset(step_lr, optimizer, get_model, train, mocker): # def test_samsum_dataset(step_lr, optimizer, tokenizer, get_model, train, mocker): from llama_recipes.finetuning import main # tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]}) BATCH_SIZE = 8 kwargs = { "model_name": "decapoda-research/llama-7b-hf", "batch_size_training": 8, "val_batch_size": 1, "use_peft": False, "dataset": "samsum_dataset", } main(**kwargs) assert train.call_count == 1 args, kwargs = train.call_args train_dataloader = args[1] eval_dataloader = args[2] VAL_SAMPLES = 818 TRAIN_SAMPLES = 14732 assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE assert len(eval_dataloader) == VAL_SAMPLES assert "labels" in next(iter(train_dataloader)).keys() assert "input_ids" in next(iter(train_dataloader)).keys() assert "attention_mask" in next(iter(train_dataloader)).keys()