# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import pytest from unittest.mock import patch @patch('llama_recipes.finetuning.train') @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained') @patch('llama_recipes.finetuning.optim.AdamW') @patch('llama_recipes.finetuning.StepLR') def test_custom_dataset(step_lr, optimizer, get_model, train, mocker): from llama_recipes.finetuning import main kwargs = { "dataset": "custom_dataset", "model_name": "decapoda-research/llama-7b-hf", # We use the tokenizer as a surrogate for llama2 tokenizer here "custom_dataset.file": "examples/custom_dataset.py", "custom_dataset.train_split": "validation", "batch_size_training": 2, "use_peft": False, } main(**kwargs) assert train.call_count == 1 args, kwargs = train.call_args train_dataloader = args[1] eval_dataloader = args[2] tokenizer = args[3] assert len(train_dataloader) == 226 assert len(eval_dataloader) == 2*226 it = iter(train_dataloader) STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True) EXPECTED_STRING = "[INST] Напиши функцию на языке swift, которая сортирует массив целых чисел, а затем выводит его на экран [/INST] Вот функция, " assert STRING.startswith(EXPECTED_STRING) next(it) next(it) next(it) STRING = tokenizer.decode(next(it)["input_ids"][0], skip_special_tokens=True) EXPECTED_SUBSTRING_1 = "Therefore you are correct. [INST] How can L’Hopital’s Rule be" EXPECTED_SUBSTRING_2 = "a circular path around the turn. [INST] How on earth is that related to L’Hopital’s Rule?" assert EXPECTED_SUBSTRING_1 in STRING assert EXPECTED_SUBSTRING_2 in STRING @patch('llama_recipes.finetuning.train') @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained') @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained') @patch('llama_recipes.finetuning.optim.AdamW') @patch('llama_recipes.finetuning.StepLR') def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker): from llama_recipes.finetuning import main tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]}) kwargs = { "dataset": "custom_dataset", "custom_dataset.file": "examples/custom_dataset.py:get_unknown_dataset", "batch_size_training": 1, "use_peft": False, } with pytest.raises(AttributeError): main(**kwargs)