|
@@ -0,0 +1,86 @@
|
|
|
+# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
+# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
|
|
|
+
|
|
|
+import random
|
|
|
+import pytest
|
|
|
+
|
|
|
+import torch
|
|
|
+
|
|
|
+from llama_recipes.data.sampler import LengthBasedBatchSampler
|
|
|
+from llama_recipes.data.sampler import DistributedLengthBasedBatchSampler
|
|
|
+
|
|
|
+SAMPLES = 33
|
|
|
+
|
|
|
+@pytest.fixture
|
|
|
+def dataset():
|
|
|
+ random.seed(42)
|
|
|
+ dataset = []
|
|
|
+ def add_samples(ds, n, a, b):
|
|
|
+ for _ in range(n):
|
|
|
+ ds.append(random.randint(a,b) * [1,])
|
|
|
+ add_samples(dataset, SAMPLES // 2, 1,9)
|
|
|
+ add_samples(dataset, (SAMPLES // 2) + (SAMPLES % 2), 10,20)
|
|
|
+
|
|
|
+ return random.sample(dataset, len(dataset))
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("batch_size, drop_last", [(2, False), (8, False), (2, True), (8, True)])
|
|
|
+def test_batch_sampler_array(dataset, batch_size, drop_last):
|
|
|
+
|
|
|
+ sampler = LengthBasedBatchSampler(dataset, batch_size, drop_last)
|
|
|
+
|
|
|
+ EXPECTED_LENGTH = SAMPLES // batch_size if drop_last else (SAMPLES // batch_size) + (SAMPLES % batch_size)
|
|
|
+
|
|
|
+ all_ids = [i for b in sampler for i in b]
|
|
|
+ assert len(set(all_ids)) == EXPECTED_LENGTH * batch_size if drop_last else len(dataset)
|
|
|
+
|
|
|
+ assert len(sampler) == EXPECTED_LENGTH
|
|
|
+ is_long = [len(d)>=10 for d in dataset]
|
|
|
+
|
|
|
+ def check_batch(batch):
|
|
|
+ return all(batch) or not any(batch)
|
|
|
+
|
|
|
+ assert all(check_batch(is_long[i] for i in b) for b in sampler)
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("batch_size, drop_last", [(2, False), (8, False), (2, True), (8, True)])
|
|
|
+def test_batch_sampler_dict(dataset, batch_size, drop_last):
|
|
|
+
|
|
|
+ dist_dataset = [{"input_ids": d, "attention_mask": d} for d in dataset]
|
|
|
+
|
|
|
+ sampler = LengthBasedBatchSampler(dist_dataset, batch_size, drop_last)
|
|
|
+
|
|
|
+ EXPECTED_LENGTH = SAMPLES // batch_size if drop_last else (SAMPLES // batch_size) + (SAMPLES % batch_size)
|
|
|
+
|
|
|
+ assert len(sampler) == EXPECTED_LENGTH
|
|
|
+ is_long = [len(d)>=10 for d in dataset]
|
|
|
+
|
|
|
+ def check_batch(batch):
|
|
|
+ return all(batch) or not any(batch)
|
|
|
+
|
|
|
+ assert all(check_batch(is_long[i] for i in b) for b in sampler)
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("batch_size", [2, 8])
|
|
|
+def test_dist_batch_sampling(dataset, batch_size):
|
|
|
+ sampler_1 = DistributedLengthBasedBatchSampler(
|
|
|
+ dataset,
|
|
|
+ batch_size=batch_size,
|
|
|
+ rank=0,
|
|
|
+ num_replicas=2,
|
|
|
+ shuffle=False,
|
|
|
+ )
|
|
|
+ sampler_2 = DistributedLengthBasedBatchSampler(
|
|
|
+ dataset,
|
|
|
+ batch_size=batch_size,
|
|
|
+ rank=1,
|
|
|
+ num_replicas=2,
|
|
|
+ shuffle=False,
|
|
|
+ )
|
|
|
+
|
|
|
+ ids_1 = set(i for b in sampler_1 for i in b)
|
|
|
+ ids_2 = set(i for b in sampler_2 for i in b)
|
|
|
+
|
|
|
+ assert ids_1.isdisjoint(ids_2)
|
|
|
+ assert len(ids_1)+len(ids_2) > 0
|
|
|
+ assert len(ids_1)+len(ids_2) == len(dataset) // batch_size * batch_size
|