Quellcode durchsuchen

adding llama code inference (#144)

Geeta Chauhan vor 1 Jahr
Ursprung
Commit
cfba150311

+ 31 - 1
docs/inference.md

@@ -41,13 +41,43 @@ model.resize_token_embeddings(model.config.vocab_size + 1)
 ```
 Padding would be required for batch inference. In this this [example](../inference/inference.py), batch size = 1 so essentially padding is not required. However,We added the code pointer as an example in case of batch inference.
 
-
 **Chat completion**
 The inference folder also includes a chat completion example, that adds built-in safety features in fine-tuned models to the prompt tokens. To run the example:
 
 ```bash
 python inference/chat_completion.py --model_name "PATH/TO/MODEL/7B/" --prompt_file inference/chats.json  --quantization --use_auditnlg
 
+```
+**Code Llama**
+
+Code llama was recently released with three flavors, base-model that support multiple programming languages, Python fine-tuned model and an instruction fine-tuned and aligned variation of Code Llama, please read more [here](https://ai.meta.com/blog/code-llama-large-language-model-coding/). Also note that the Python fine-tuned model and 34B models are not trained on infilling objective, hence can not be used for infilling use-case.
+
+Find the scripts to run Code Llama [here](../inference/code-llama/), where there are two examples of running code completion and infilling.
+
+**Note** Please find the right model on HF side [here](https://huggingface.co/codellama). 
+
+Make sure to install Transformers from source for now
+
+```bash
+
+pip install git+https://github.com/huggingface/transformers
+
+```
+
+To run the code completion example:
+
+```bash
+
+python code_completion_example.py --model_name MODEL_NAME  --prompt_file code_completion_prompt.txt --temperature 0.2 --top_p 0.9
+
+```
+
+To run the code infilling example:
+
+```bash
+
+python code_infilling_example.py --model_name MODEL_NAME --prompt_file code_infilling_prompt.txt --temperature 0.2 --top_p 0.9
+
 ```
 
 ## Flash Attention and Xformer Memory Efficient Kernels

+ 129 - 0
inference/code-llama/code_completion_example.py

@@ -0,0 +1,129 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
+
+# from accelerate import init_empty_weights, load_checkpoint_and_dispatch
+
+import fire
+import torch
+import os
+import sys
+import time
+from typing import List
+
+from transformers import AutoTokenizer
+sys.path.append("..")
+from safety_utils import get_safety_checker
+from model_utils import load_model, load_peft_model, load_llama_from_config
+
+def main(
+    model_name,
+    peft_model: str=None,
+    quantization: bool=False,
+    max_new_tokens =100, #The maximum numbers of tokens to generate
+    prompt_file: str=None,
+    seed: int=42, #seed value for reproducibility
+    do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
+    min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
+    use_cache: bool=True,  #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
+    top_p: float=0.9, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
+    temperature: float=0.6, # [optional] The value used to modulate the next token probabilities.
+    top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
+    repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
+    length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation. 
+    enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
+    enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
+    enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
+    use_fast_kernels: bool = True, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
+    **kwargs
+):
+    if prompt_file is not None:
+        assert os.path.exists(
+            prompt_file
+        ), f"Provided Prompt file does not exist {prompt_file}"
+        with open(prompt_file, "r") as f:
+            user_prompt = f.read()
+    else:
+        print("No user prompt provided. Exiting.")
+        sys.exit(1)
+    
+    # Set the seeds for reproducibility
+    torch.cuda.manual_seed(seed)
+    torch.manual_seed(seed)
+    
+    model = load_model(model_name, quantization)
+    if peft_model:
+        model = load_peft_model(model, peft_model)
+
+    model.eval()
+    
+    if use_fast_kernels:
+        """
+        Setting 'use_fast_kernels' will enable
+        using of Flash Attention or Xformer memory-efficient kernels 
+        based on the hardware being used. This would speed up inference when used for batched inputs.
+        """
+        try:
+            from optimum.bettertransformer import BetterTransformer
+            model = BetterTransformer.transform(model)    
+        except ImportError:
+            print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")
+
+    tokenizer = AutoTokenizer.from_pretrained(model_name)
+    safety_checker = get_safety_checker(enable_azure_content_safety,
+                                        enable_sensitive_topics,
+                                        enable_salesforce_content_safety,
+                                        )
+
+    # Safety check of the user prompt
+    safety_results = [check(user_prompt) for check in safety_checker]
+    are_safe = all([r[1] for r in safety_results])
+    if are_safe:
+        print("User prompt deemed safe.")
+        print(f"User prompt:\n{user_prompt}")
+    else:
+        print("User prompt deemed unsafe.")
+        for method, is_safe, report in safety_results:
+            if not is_safe:
+                print(method)
+                print(report)
+        print("Skipping the inference as the prompt is not safe.")
+        sys.exit(1)  # Exit the program with an error status
+        
+    batch = tokenizer(user_prompt, return_tensors="pt")
+
+    batch = {k: v.to("cuda") for k, v in batch.items()}
+    start = time.perf_counter()
+    with torch.no_grad():
+        outputs = model.generate(
+            **batch,
+            max_new_tokens=max_new_tokens,
+            do_sample=do_sample,
+            top_p=top_p,
+            temperature=temperature,
+            min_length=min_length,
+            use_cache=use_cache,
+            top_k=top_k,
+            repetition_penalty=repetition_penalty,
+            length_penalty=length_penalty,
+            **kwargs 
+        )
+    e2e_inference_time = (time.perf_counter()-start)*1000
+    print(f"the inference time is {e2e_inference_time} ms")
+    output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
+    
+    # Safety check of the model output
+    safety_results = [check(output_text) for check in safety_checker]
+    are_safe = all([r[1] for r in safety_results])
+    if are_safe:
+        print("User input and model output deemed safe.")
+        print(f"Model output:\n{output_text}")
+    else:
+        print("Model output deemed unsafe.")
+        for method, is_safe, report in safety_results:
+            if not is_safe:
+                print(method)
+                print(report)
+                
+
+if __name__ == "__main__":
+    fire.Fire(main)

+ 7 - 0
inference/code-llama/code_completion_prompt.txt

@@ -0,0 +1,7 @@
+import argparse
+
+def main(string: str):
+    print(string)
+    print(string[::-1])
+    
+if __name__ == "__main__":

+ 129 - 0
inference/code-llama/code_infilling_example.py

@@ -0,0 +1,129 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
+
+# from accelerate import init_empty_weights, load_checkpoint_and_dispatch
+
+import fire
+import torch
+import os
+import sys
+import time
+from typing import List
+
+from transformers import AutoTokenizer
+sys.path.append("..")
+from safety_utils import get_safety_checker
+from model_utils import load_model, load_peft_model, load_llama_from_config
+
+def main(
+    model_name,
+    peft_model: str=None,
+    quantization: bool=False,
+    max_new_tokens =100, #The maximum numbers of tokens to generate
+    prompt_file: str=None,
+    seed: int=42, #seed value for reproducibility
+    do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
+    min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
+    use_cache: bool=True,  #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
+    top_p: float=0.9, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
+    temperature: float=0.6, # [optional] The value used to modulate the next token probabilities.
+    top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
+    repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
+    length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation. 
+    enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
+    enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
+    enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
+    use_fast_kernels: bool = True, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
+    **kwargs
+):
+    if prompt_file is not None:
+        assert os.path.exists(
+            prompt_file
+        ), f"Provided Prompt file does not exist {prompt_file}"
+        with open(prompt_file, "r") as f:
+            user_prompt = f.read()
+    else:
+        print("No user prompt provided. Exiting.")
+        sys.exit(1)
+    # Set the seeds for reproducibility
+    torch.cuda.manual_seed(seed)
+    torch.manual_seed(seed)
+    
+    model = load_model(model_name, quantization)
+    model.config.tp_size=1
+    if peft_model:
+        model = load_peft_model(model, peft_model)
+
+    model.eval()
+    
+    if use_fast_kernels:
+        """
+        Setting 'use_fast_kernels' will enable
+        using of Flash Attention or Xformer memory-efficient kernels 
+        based on the hardware being used. This would speed up inference when used for batched inputs.
+        """
+        try:
+            from optimum.bettertransformer import BetterTransformer
+            model = BetterTransformer.transform(model)    
+        except ImportError:
+            print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")
+
+    tokenizer = AutoTokenizer.from_pretrained(model_name)
+    
+    safety_checker = get_safety_checker(enable_azure_content_safety,
+                                        enable_sensitive_topics,
+                                        enable_salesforce_content_safety,
+                                        )
+
+    # Safety check of the user prompt
+    safety_results = [check(user_prompt) for check in safety_checker]
+    are_safe = all([r[1] for r in safety_results])
+    if are_safe:
+        print("User prompt deemed safe.")
+        print(f"User prompt:\n{user_prompt}")
+    else:
+        print("User prompt deemed unsafe.")
+        for method, is_safe, report in safety_results:
+            if not is_safe:
+                print(method)
+                print(report)
+        print("Skipping the inference as the prompt is not safe.")
+        sys.exit(1)  # Exit the program with an error status
+        
+    batch = tokenizer(user_prompt, return_tensors="pt")
+    batch = {k: v.to("cuda") for k, v in batch.items()}
+    
+    start = time.perf_counter()
+    with torch.no_grad():
+        outputs = model.generate(
+            **batch,
+            max_new_tokens=max_new_tokens,
+            do_sample=do_sample,
+            top_p=top_p,
+            temperature=temperature,
+            min_length=min_length,
+            use_cache=use_cache,
+            top_k=top_k,
+            repetition_penalty=repetition_penalty,
+            length_penalty=length_penalty,
+            **kwargs 
+        )
+    e2e_inference_time = (time.perf_counter()-start)*1000
+    print(f"the inference time is {e2e_inference_time} ms")
+    filling = tokenizer.batch_decode(outputs[:, batch["input_ids"].shape[1]:], skip_special_tokens=True)[0]
+    # Safety check of the model output
+    safety_results = [check(filling) for check in safety_checker]
+    are_safe = all([r[1] for r in safety_results])
+    if are_safe:
+        print("User input and model output deemed safe.")
+        print(user_prompt.replace("<FILL_ME>", filling))
+    else:
+        print("Model output deemed unsafe.")
+        for method, is_safe, report in safety_results:
+            if not is_safe:
+                print(method)
+                print(report)
+                
+
+if __name__ == "__main__":
+    fire.Fire(main)

+ 3 - 0
inference/code-llama/code_infilling_prompt.txt

@@ -0,0 +1,3 @@
+def remove_non_ascii(s: str) -> str:
+    """ <FILL_ME>
+    return result