|
@@ -1,83 +0,0 @@
|
|
|
-# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
-# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
|
|
|
-import gc
|
|
|
-import os
|
|
|
-import sys
|
|
|
-import threading
|
|
|
-
|
|
|
-import numpy as np
|
|
|
-import psutil
|
|
|
-import torch
|
|
|
-from accelerate.utils import is_xpu_available
|
|
|
-
|
|
|
-def byte2gb(x):
|
|
|
- return int(x / 2**30)
|
|
|
-# This context manager is used to track the peak memory usage of the process
|
|
|
-class MemoryTrace:
|
|
|
- def __enter__(self):
|
|
|
- gc.collect()
|
|
|
- if is_xpu_available():
|
|
|
- torch.xpu.empty_cache()
|
|
|
- torch.xpu.reset_max_memory_allocated() # reset the peak gauge to zero
|
|
|
- self.begin = byte2gb(torch.xpu.memory_allocated())
|
|
|
- elif torch.cuda.is_available():
|
|
|
- torch.cuda.empty_cache()
|
|
|
- torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
|
|
|
- self.begin = byte2gb(torch.cuda.memory_allocated())
|
|
|
- self.process = psutil.Process()
|
|
|
- self.cpu_begin = byte2gb(self.cpu_mem_used())
|
|
|
- self.peak_monitoring = True
|
|
|
- peak_monitor_thread = threading.Thread(target=self.peak_monitor_func)
|
|
|
- peak_monitor_thread.daemon = True
|
|
|
- peak_monitor_thread.start()
|
|
|
- return self
|
|
|
-
|
|
|
- def cpu_mem_used(self):
|
|
|
- """get resident set size memory for the current process"""
|
|
|
- return self.process.memory_info().rss
|
|
|
-
|
|
|
- def peak_monitor_func(self):
|
|
|
- self.cpu_peak = -1
|
|
|
-
|
|
|
- while True:
|
|
|
- self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak)
|
|
|
-
|
|
|
- # can't sleep or will not catch the peak right (this comment is here on purpose)
|
|
|
- # time.sleep(0.001) # 1msec
|
|
|
-
|
|
|
- if not self.peak_monitoring:
|
|
|
- break
|
|
|
-
|
|
|
- def __exit__(self, *exc):
|
|
|
- self.peak_monitoring = False
|
|
|
-
|
|
|
- gc.collect()
|
|
|
- if is_xpu_available():
|
|
|
- torch.xpu.empty_cache()
|
|
|
- self.end = byte2gb(torch.xpu.memory_allocated())
|
|
|
- self.peak = byte2gb(torch.xpu.max_memory_allocated())
|
|
|
- xpu_info = torch.xpu.memory_stats()
|
|
|
- self.peak_active_gb = byte2gb(xpu_info["active_bytes.all.peak"])
|
|
|
- self.xpu_malloc_retires = xpu_info.get("num_alloc_retries", 0)
|
|
|
- self.peak_active_gb = byte2gb(xpu_info["active_bytes.all.peak"])
|
|
|
- self.m_xpu_ooms = xpu_info.get("num_ooms", 0)
|
|
|
- self.used = byte2gb(self.end - self.begin)
|
|
|
- self.peaked = byte2gb(self.peak - self.begin)
|
|
|
- self.max_reserved = byte2gb(torch.xpu.max_memory_reserved())
|
|
|
- else:
|
|
|
- torch.cuda.empty_cache()
|
|
|
- self.end = byte2gb(torch.cuda.memory_allocated())
|
|
|
- self.peak = byte2gb(torch.cuda.max_memory_allocated())
|
|
|
- cuda_info = torch.cuda.memory_stats()
|
|
|
- self.peak_active_gb = byte2gb(cuda_info["active_bytes.all.peak"])
|
|
|
- self.cuda_malloc_retires = cuda_info.get("num_alloc_retries", 0)
|
|
|
- self.peak_active_gb = byte2gb(cuda_info["active_bytes.all.peak"])
|
|
|
- self.m_cuda_ooms = cuda_info.get("num_ooms", 0)
|
|
|
- self.used = byte2gb(self.end - self.begin)
|
|
|
- self.peaked = byte2gb(self.peak - self.begin)
|
|
|
- self.max_reserved = byte2gb(torch.cuda.max_memory_reserved())
|
|
|
-
|
|
|
- self.cpu_end = self.cpu_mem_used()
|
|
|
- self.cpu_used = byte2gb(self.cpu_end - self.cpu_begin)
|
|
|
- self.cpu_peaked = byte2gb(self.cpu_peak - self.cpu_begin)
|
|
|
- # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
|