|
@@ -0,0 +1,158 @@
|
|
|
+# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
+# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
|
|
|
+
|
|
|
+# from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
|
|
+
|
|
|
+import fire
|
|
|
+import os
|
|
|
+import sys
|
|
|
+import time
|
|
|
+
|
|
|
+import torch
|
|
|
+from transformers import AutoTokenizer
|
|
|
+
|
|
|
+from llama_recipes.inference.safety_utils import get_safety_checker
|
|
|
+from llama_recipes.inference.model_utils import load_model, load_peft_model
|
|
|
+
|
|
|
+
|
|
|
+def handle_safety_check(are_safe_user_prompt, user_prompt, safety_results_user_prompt, are_safe_system_prompt, system_prompt, safety_results_system_prompt):
|
|
|
+ """
|
|
|
+ Handles the output based on the safety check of both user and system prompts.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ - are_safe_user_prompt (bool): Indicates whether the user prompt is safe.
|
|
|
+ - user_prompt (str): The user prompt that was checked for safety.
|
|
|
+ - safety_results_user_prompt (list of tuples): A list of tuples for the user prompt containing the method, safety status, and safety report.
|
|
|
+ - are_safe_system_prompt (bool): Indicates whether the system prompt is safe.
|
|
|
+ - system_prompt (str): The system prompt that was checked for safety.
|
|
|
+ - safety_results_system_prompt (list of tuples): A list of tuples for the system prompt containing the method, safety status, and safety report.
|
|
|
+ """
|
|
|
+ def print_safety_results(are_safe_prompt, prompt, safety_results, prompt_type="User"):
|
|
|
+ """
|
|
|
+ Prints the safety results for a prompt.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ - are_safe_prompt (bool): Indicates whether the prompt is safe.
|
|
|
+ - prompt (str): The prompt that was checked for safety.
|
|
|
+ - safety_results (list of tuples): A list of tuples containing the method, safety status, and safety report.
|
|
|
+ - prompt_type (str): The type of prompt (User/System).
|
|
|
+ """
|
|
|
+ if are_safe_prompt:
|
|
|
+ print(f"{prompt_type} prompt deemed safe.")
|
|
|
+ print(f"{prompt_type} prompt:\n{prompt}")
|
|
|
+ else:
|
|
|
+ print(f"{prompt_type} prompt deemed unsafe.")
|
|
|
+ for method, is_safe, report in safety_results:
|
|
|
+ if not is_safe:
|
|
|
+ print(method)
|
|
|
+ print(report)
|
|
|
+ print(f"Skipping the inference as the {prompt_type.lower()} prompt is not safe.")
|
|
|
+ sys.exit(1)
|
|
|
+
|
|
|
+ # Check user prompt
|
|
|
+ print_safety_results(are_safe_user_prompt, user_prompt, safety_results_user_prompt, "User")
|
|
|
+
|
|
|
+ # Check system prompt
|
|
|
+ print_safety_results(are_safe_system_prompt, system_prompt, safety_results_system_prompt, "System")
|
|
|
+
|
|
|
+def main(
|
|
|
+ model_name,
|
|
|
+ peft_model: str=None,
|
|
|
+ quantization: bool=False,
|
|
|
+ max_new_tokens =100, #The maximum numbers of tokens to generate
|
|
|
+ prompt_file: str=None,
|
|
|
+ seed: int=42, #seed value for reproducibility
|
|
|
+ do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
|
|
|
+ min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
|
|
|
+ use_cache: bool=False, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
|
|
|
+ top_p: float=0.9, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
|
|
|
+ temperature: float=0.6, # [optional] The value used to modulate the next token probabilities.
|
|
|
+ top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
|
|
+ repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
|
|
|
+ length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
|
|
|
+ enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
|
|
|
+ enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
|
|
|
+ enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
|
|
|
+ enable_llamaguard_content_safety: bool=False, # Enable safety check with Llama-Guard
|
|
|
+ use_fast_kernels: bool = True, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
|
|
|
+ **kwargs
|
|
|
+):
|
|
|
+ system_prompt = input("Please insert your system prompt: ")
|
|
|
+ user_prompt = input("Please insert your prompt: ")
|
|
|
+ chat = [
|
|
|
+ {"role": "system", "content": system_prompt},
|
|
|
+ {"role": "user", "content": user_prompt},
|
|
|
+ ]
|
|
|
+ # Set the seeds for reproducibility
|
|
|
+ torch.cuda.manual_seed(seed)
|
|
|
+ torch.manual_seed(seed)
|
|
|
+
|
|
|
+ model = load_model(model_name, quantization)
|
|
|
+ if peft_model:
|
|
|
+ model = load_peft_model(model, peft_model)
|
|
|
+
|
|
|
+ model.eval()
|
|
|
+
|
|
|
+ if use_fast_kernels:
|
|
|
+ """
|
|
|
+ Setting 'use_fast_kernels' will enable
|
|
|
+ using of Flash Attention or Xformer memory-efficient kernels
|
|
|
+ based on the hardware being used. This would speed up inference when used for batched inputs.
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ from optimum.bettertransformer import BetterTransformer
|
|
|
+ model = BetterTransformer.transform(model)
|
|
|
+ except ImportError:
|
|
|
+ print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")
|
|
|
+
|
|
|
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
+ safety_checker = get_safety_checker(enable_azure_content_safety,
|
|
|
+ enable_sensitive_topics,
|
|
|
+ enable_salesforce_content_safety,
|
|
|
+ enable_llamaguard_content_safety,
|
|
|
+ )
|
|
|
+
|
|
|
+ # Safety check of the user prompt
|
|
|
+ safety_results_user_prompt = [check(user_prompt) for check in safety_checker]
|
|
|
+ safety_results_system_prompt = [check(system_prompt) for check in safety_checker]
|
|
|
+ are_safe_user_prompt = all([r[1] for r in safety_results_user_prompt])
|
|
|
+ are_safe_system_prompt = all([r[1] for r in safety_results_system_prompt])
|
|
|
+ handle_safety_check(are_safe_user_prompt, user_prompt, safety_results_user_prompt, are_safe_system_prompt, system_prompt, safety_results_system_prompt)
|
|
|
+
|
|
|
+ inputs = tokenizer.apply_chat_template(chat, return_tensors="pt").to("cuda")
|
|
|
+
|
|
|
+ start = time.perf_counter()
|
|
|
+ with torch.no_grad():
|
|
|
+ outputs = model.generate(
|
|
|
+ input_ids=inputs,
|
|
|
+ max_new_tokens=max_new_tokens,
|
|
|
+ do_sample=do_sample,
|
|
|
+ top_p=top_p,
|
|
|
+ temperature=temperature,
|
|
|
+ min_length=min_length,
|
|
|
+ use_cache=use_cache,
|
|
|
+ top_k=top_k,
|
|
|
+ repetition_penalty=repetition_penalty,
|
|
|
+ length_penalty=length_penalty,
|
|
|
+ **kwargs
|
|
|
+ )
|
|
|
+ e2e_inference_time = (time.perf_counter()-start)*1000
|
|
|
+ print(f"the inference time is {e2e_inference_time} ms")
|
|
|
+ output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
+
|
|
|
+ # Safety check of the model output
|
|
|
+ safety_results = [check(output_text) for check in safety_checker]
|
|
|
+ are_safe = all([r[1] for r in safety_results])
|
|
|
+ if are_safe:
|
|
|
+ print("User input and model output deemed safe.")
|
|
|
+ print(f"Model output:\n{output_text}")
|
|
|
+ else:
|
|
|
+ print("Model output deemed unsafe.")
|
|
|
+ for method, is_safe, report in safety_results:
|
|
|
+ if not is_safe:
|
|
|
+ print(method)
|
|
|
+ print(report)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ fire.Fire(main)
|