|
@@ -3,18 +3,23 @@
|
|
|
|
|
|
from unittest.mock import patch
|
|
|
|
|
|
+from transformers import LlamaTokenizer
|
|
|
+
|
|
|
|
|
|
@patch('llama_recipes.finetuning.train')
|
|
|
+@patch('llama_recipes.finetuning.LlamaTokenizer')
|
|
|
@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
|
|
|
-# @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
|
|
|
@patch('llama_recipes.finetuning.optim.AdamW')
|
|
|
@patch('llama_recipes.finetuning.StepLR')
|
|
|
-def test_samsum_dataset(step_lr, optimizer, get_model, train, mocker):
|
|
|
-# def test_samsum_dataset(step_lr, optimizer, tokenizer, get_model, train, mocker):
|
|
|
+def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker):
|
|
|
from llama_recipes.finetuning import main
|
|
|
-
|
|
|
- # tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
|
|
|
-
|
|
|
+
|
|
|
+ #Align with Llama 2 tokenizer
|
|
|
+ tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
|
|
|
+ tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>'})
|
|
|
+ tokenizer.from_pretrained.return_value.bos_token_id = 1
|
|
|
+ tokenizer.from_pretrained.return_value.eos_token_id = 2
|
|
|
+
|
|
|
BATCH_SIZE = 8
|
|
|
kwargs = {
|
|
|
"model_name": "decapoda-research/llama-7b-hf",
|
|
@@ -22,22 +27,32 @@ def test_samsum_dataset(step_lr, optimizer, get_model, train, mocker):
|
|
|
"val_batch_size": 1,
|
|
|
"use_peft": False,
|
|
|
"dataset": "samsum_dataset",
|
|
|
+ "batching_strategy": "padding",
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
main(**kwargs)
|
|
|
-
|
|
|
+
|
|
|
assert train.call_count == 1
|
|
|
-
|
|
|
+
|
|
|
args, kwargs = train.call_args
|
|
|
train_dataloader = args[1]
|
|
|
eval_dataloader = args[2]
|
|
|
-
|
|
|
+
|
|
|
VAL_SAMPLES = 818
|
|
|
TRAIN_SAMPLES = 14732
|
|
|
-
|
|
|
+
|
|
|
assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
|
|
|
assert len(eval_dataloader) == VAL_SAMPLES
|
|
|
-
|
|
|
- assert "labels" in next(iter(train_dataloader)).keys()
|
|
|
- assert "input_ids" in next(iter(train_dataloader)).keys()
|
|
|
- assert "attention_mask" in next(iter(train_dataloader)).keys()
|
|
|
+
|
|
|
+ batch = next(iter(train_dataloader))
|
|
|
+
|
|
|
+ assert "labels" in batch.keys()
|
|
|
+ assert "input_ids" in batch.keys()
|
|
|
+ assert "attention_mask" in batch.keys()
|
|
|
+
|
|
|
+ assert batch["labels"][0][268] == -100
|
|
|
+ assert batch["labels"][0][269] == 22291
|
|
|
+
|
|
|
+ assert batch["input_ids"][0][0] == 1
|
|
|
+ assert batch["labels"][0][-1] == 2
|
|
|
+ assert batch["input_ids"][0][-1] == 2
|