|
@@ -1,29 +1,24 @@
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
|
|
|
|
|
|
+from functools import partial
|
|
|
from unittest.mock import patch
|
|
|
|
|
|
-from transformers import LlamaTokenizer
|
|
|
-
|
|
|
|
|
|
@patch('llama_recipes.finetuning.train')
|
|
|
@patch('llama_recipes.finetuning.LlamaTokenizer')
|
|
|
@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
|
|
|
@patch('llama_recipes.finetuning.optim.AdamW')
|
|
|
@patch('llama_recipes.finetuning.StepLR')
|
|
|
-def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker):
|
|
|
+def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer):
|
|
|
from llama_recipes.finetuning import main
|
|
|
|
|
|
- #Align with Llama 2 tokenizer
|
|
|
- tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
|
|
|
- tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>'})
|
|
|
- tokenizer.from_pretrained.return_value.bos_token_id = 1
|
|
|
- tokenizer.from_pretrained.return_value.eos_token_id = 2
|
|
|
+ setup_tokenizer(tokenizer)
|
|
|
|
|
|
BATCH_SIZE = 8
|
|
|
kwargs = {
|
|
|
"model_name": "decapoda-research/llama-7b-hf",
|
|
|
- "batch_size_training": 8,
|
|
|
+ "batch_size_training": BATCH_SIZE,
|
|
|
"val_batch_size": 1,
|
|
|
"use_peft": False,
|
|
|
"dataset": "samsum_dataset",
|
|
@@ -56,49 +51,3 @@ def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker)
|
|
|
assert batch["input_ids"][0][0] == 1
|
|
|
assert batch["labels"][0][-1] == 2
|
|
|
assert batch["input_ids"][0][-1] == 2
|
|
|
-
|
|
|
-
|
|
|
-@patch('llama_recipes.finetuning.train')
|
|
|
-@patch('llama_recipes.finetuning.LlamaTokenizer')
|
|
|
-@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
|
|
|
-@patch('llama_recipes.finetuning.optim.AdamW')
|
|
|
-@patch('llama_recipes.finetuning.StepLR')
|
|
|
-def test_samsum_dataset_packing(step_lr, optimizer, get_model, tokenizer, train, mocker):
|
|
|
- from llama_recipes.finetuning import main
|
|
|
-
|
|
|
- #Align with Llama 2 tokenizer
|
|
|
- tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
|
|
|
- tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>'})
|
|
|
- tokenizer.from_pretrained.return_value.bos_token_id = 1
|
|
|
- tokenizer.from_pretrained.return_value.eos_token_id = 2
|
|
|
-
|
|
|
- BATCH_SIZE = 8
|
|
|
- kwargs = {
|
|
|
- "model_name": "decapoda-research/llama-7b-hf",
|
|
|
- "batch_size_training": 8,
|
|
|
- "val_batch_size": 1,
|
|
|
- "use_peft": False,
|
|
|
- "dataset": "samsum_dataset",
|
|
|
- "batching_strategy": "packing",
|
|
|
- }
|
|
|
-
|
|
|
- main(**kwargs)
|
|
|
-
|
|
|
- assert train.call_count == 1
|
|
|
-
|
|
|
- args, kwargs = train.call_args
|
|
|
- train_dataloader = args[1]
|
|
|
- eval_dataloader = args[2]
|
|
|
-
|
|
|
- assert len(train_dataloader) == 96
|
|
|
- assert len(eval_dataloader) == 42
|
|
|
-
|
|
|
- batch = next(iter(train_dataloader))
|
|
|
-
|
|
|
- assert "labels" in batch.keys()
|
|
|
- assert "input_ids" in batch.keys()
|
|
|
- assert "attention_mask" in batch.keys()
|
|
|
-
|
|
|
- assert batch["labels"][0].size(0) == 4096
|
|
|
- assert batch["input_ids"][0].size(0) == 4096
|
|
|
- assert batch["attention_mask"][0].size(0) == 4096
|