|
@@ -38,12 +38,27 @@ python chat_completion.py --model_name "PATH/TO/MODEL/7B/" --prompt_file chats.j
|
|
|
|
|
|
In case you have fine-tuned your model with pure FSDP and saved the checkpoints with "SHARDED_STATE_DICT" as shown [here](../configs/fsdp.py), you can use this converter script to convert the FSDP Sharded checkpoints into HuggingFace checkpoints. This enables you to use the inference script normally as mentioned above.
|
|
|
**To convert the checkpoint use the following command**:
|
|
|
+
|
|
|
+This is helpful if you have fine-tuned you model using FSDP only as follows:
|
|
|
+
|
|
|
+```bash
|
|
|
+torchrun --nnodes 1 --nproc_per_node 8 llama_finetuning.py --enable_fsdp --model_name /patht_of_model_folder/7B --dist_checkpoint_root_folder model_checkpoints --dist_checkpoint_folder fine-tuned --pure_bf16
|
|
|
+```
|
|
|
+Then convert your FSDP checkpoint to HuggingFace checkpoints using:
|
|
|
```bash
|
|
|
python checkpoint_converter_fsdp_hf.py --model_name PATH/to/FSDP/Checkpoints --save_dir PATH/to/save/checkpoints --model_path PATH/or/HF/model_name
|
|
|
|
|
|
# --model_path specifies the HF Llama model name or path where it has config.json and tokenizer.json
|
|
|
```
|
|
|
|
|
|
+Then run inference using:
|
|
|
+
|
|
|
+```bash
|
|
|
+python inference/inference.py --model_name <training_config.output_dir> --prompt_file <test_prompt_file>
|
|
|
+
|
|
|
+```
|
|
|
+
|
|
|
+
|
|
|
## Other Inference Options
|
|
|
|
|
|
Alternate inference options include:
|