|
@@ -68,7 +68,7 @@ If you are interested in running full parameter fine-tuning on the 70B model, yo
|
|
|
|
|
|
```bash
|
|
|
|
|
|
-torchrun --nnodes 1 --nproc_per_node 8 llama_finetuning.py --enable_fsdp --low_cpu_fsdp --pure_bf16 --model_name /patht_of_model_folder/70B --batch_size_training 1 --micro_batch_size 1 --dist_checkpoint_root_folder model_checkpoints --dist_checkpoint_folder fine-tuned
|
|
|
+torchrun --nnodes 1 --nproc_per_node 8 llama_finetuning.py --enable_fsdp --low_cpu_fsdp --pure_bf16 --model_name /patht_of_model_folder/70B --batch_size_training 1 --dist_checkpoint_root_folder model_checkpoints --dist_checkpoint_folder fine-tuned
|
|
|
|
|
|
```
|
|
|
|
|
@@ -126,6 +126,7 @@ model_name: str="PATH/to/LLAMA 2/7B"
|
|
|
enable_fsdp: bool= False
|
|
|
run_validation: bool=True
|
|
|
batch_size_training: int=4
|
|
|
+gradient_accumulation_steps: int=1
|
|
|
num_epochs: int=3
|
|
|
num_workers_dataloader: int=2
|
|
|
lr: float=2e-4
|
|
@@ -135,7 +136,6 @@ use_fp16: bool=False
|
|
|
mixed_precision: bool=True
|
|
|
val_batch_size: int=4
|
|
|
dataset = "samsum_dataset" # alpaca_dataset, grammar_dataset
|
|
|
-micro_batch_size: int=1
|
|
|
peft_method: str = "lora" # None , llama_adapter, prefix
|
|
|
use_peft: bool=False
|
|
|
output_dir: str = "./ft-output"
|