Forráskód Böngészése

Fixing error in Readme, adding smaple output

Beto 1 éve
szülő
commit
2f6999d205
1 módosított fájl, 21 hozzáadás és 2 törlés
  1. 21 2
      examples/llama_guard/README.md

+ 21 - 2
examples/llama_guard/README.md

@@ -6,7 +6,7 @@ This folder contains an example file to run Llama Guard inference directly.
 
 ## Requirements
 1. Access to Llama guard model weights on Hugging Face. To get access, follow the steps described [here](https://github.com/facebookresearch/PurpleLlama/tree/main/Llama-Guard#download)
-2. Llama recipes dependencies installed 
+2. Llama recipes package and it's dependencies [installed](https://github.com/albertodepaola/llama-recipes/blob/llama-guard-data-formatter-example/README.md#installation)
 3. A GPU with at least 21 GB of free RAM to load both 7B models quantized.
 
 ## Llama Guard inference script
@@ -34,8 +34,27 @@ To run the samples, with all the dependencies installed, execute this command:
 
 `python examples/llama_guard/inference.py`
 
+This is the output:
+
+```
+['<Sample user prompt>']
+> safe
+
+==================================
+
+['<Sample user prompt>', '<Sample agent response>']
+> safe
+
+==================================
+
+['<Sample user prompt>', '<Sample agent response>', '<Sample user reply>', '<Sample agent response>']
+> safe
+
+==================================
+```
+
 ## Inference Safety Checker
-When running the regular inference script with prompts, Llama Guard will be used as a safety checker on the user prompt and the model output. If both are safe, the result will be show, else a message with the error will be show, with the word unsafe and a comma separated list of categories infringed. Llama Guard is always loaded quantized using Hugging Face Transformers library.
+When running the regular inference script with prompts, Llama Guard will be used as a safety checker on the user prompt and the model output. If both are safe, the result will be shown, else a message with the error will be shown, with the word unsafe and a comma separated list of categories infringed. Llama Guard is always loaded quantized using Hugging Face Transformers library.
 
 In this case, the default categories are applied by the tokenizer, using the `apply_chat_template` method.