|
@@ -0,0 +1,73 @@
|
|
|
+from unittest.mock import patch
|
|
|
+
|
|
|
+from torch.utils.data.dataloader import DataLoader
|
|
|
+
|
|
|
+from llama_recipes.finetuning import main
|
|
|
+
|
|
|
+@patch('llama_recipes.finetuning.train')
|
|
|
+@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
|
|
|
+@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
|
|
|
+@patch('llama_recipes.finetuning.get_preprocessed_dataset')
|
|
|
+@patch('llama_recipes.finetuning.optim.AdamW')
|
|
|
+@patch('llama_recipes.finetuning.StepLR')
|
|
|
+def test_finetuning_no_validation(step_lr, optimizer, get_dataset, tokenizer, get_model, train):
|
|
|
+ kwargs = {"run_validation": True}
|
|
|
+
|
|
|
+ get_dataset.return_value = [1]
|
|
|
+
|
|
|
+ main(**kwargs)
|
|
|
+
|
|
|
+ assert train.call_count == 1
|
|
|
+
|
|
|
+ args, kwargs = train.call_args
|
|
|
+ train_dataloader = args[1]
|
|
|
+ eval_dataloader = args[2]
|
|
|
+
|
|
|
+ assert isinstance(train_dataloader, DataLoader)
|
|
|
+ assert eval_dataloader is None
|
|
|
+
|
|
|
+ assert get_model.return_value.to.call_args.args[0] == "cuda"
|
|
|
+
|
|
|
+
|
|
|
+@patch('llama_recipes.finetuning.train')
|
|
|
+@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
|
|
|
+@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
|
|
|
+@patch('llama_recipes.finetuning.get_preprocessed_dataset')
|
|
|
+@patch('llama_recipes.finetuning.optim.AdamW')
|
|
|
+@patch('llama_recipes.finetuning.StepLR')
|
|
|
+def test_finetuning_with_validation(step_lr, optimizer, get_dataset, tokenizer, get_model, train):
|
|
|
+ kwargs = {"run_validation": False}
|
|
|
+
|
|
|
+ get_dataset.return_value = [1]
|
|
|
+
|
|
|
+ main(**kwargs)
|
|
|
+
|
|
|
+ assert train.call_count == 1
|
|
|
+
|
|
|
+ args, kwargs = train.call_args
|
|
|
+ train_dataloader = args[1]
|
|
|
+ eval_dataloader = args[2]
|
|
|
+
|
|
|
+ assert isinstance(train_dataloader, DataLoader)
|
|
|
+ assert isinstance(eval_dataloader, DataLoader)
|
|
|
+
|
|
|
+ assert get_model.return_value.to.call_args.args[0] == "cuda"
|
|
|
+
|
|
|
+
|
|
|
+@patch('llama_recipes.finetuning.train')
|
|
|
+@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
|
|
|
+@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
|
|
|
+@patch('llama_recipes.finetuning.get_preprocessed_dataset')
|
|
|
+@patch('llama_recipes.finetuning.generate_peft_config')
|
|
|
+@patch('llama_recipes.finetuning.get_peft_model')
|
|
|
+@patch('llama_recipes.finetuning.optim.AdamW')
|
|
|
+@patch('llama_recipes.finetuning.StepLR')
|
|
|
+def test_finetuning_peft(step_lr, optimizer, get_peft_model, gen_peft_config, get_dataset, tokenizer, get_model, train):
|
|
|
+ kwargs = {"use_peft": True}
|
|
|
+
|
|
|
+ get_dataset.return_value = [1]
|
|
|
+
|
|
|
+ main(**kwargs)
|
|
|
+
|
|
|
+ assert get_peft_model.return_value.to.call_args.args[0] == "cuda"
|
|
|
+ assert get_peft_model.return_value.print_trainable_parameters.call_count == 1
|