Browse Source

Added test for finetuning script

Matthias Reso 1 year ago
parent
commit
257e2baf55
1 changed files with 73 additions and 0 deletions
  1. 73 0
      tests/test_finetuning.py

+ 73 - 0
tests/test_finetuning.py

@@ -0,0 +1,73 @@
+from unittest.mock import patch
+
+from torch.utils.data.dataloader import DataLoader
+
+from llama_recipes.finetuning import main
+
+@patch('llama_recipes.finetuning.train')
+@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
+@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
+@patch('llama_recipes.finetuning.get_preprocessed_dataset')
+@patch('llama_recipes.finetuning.optim.AdamW')
+@patch('llama_recipes.finetuning.StepLR')
+def test_finetuning_no_validation(step_lr, optimizer, get_dataset, tokenizer, get_model, train):
+    kwargs = {"run_validation": True}
+    
+    get_dataset.return_value = [1]
+    
+    main(**kwargs)
+    
+    assert train.call_count == 1
+    
+    args, kwargs = train.call_args
+    train_dataloader = args[1]
+    eval_dataloader = args[2]
+    
+    assert isinstance(train_dataloader, DataLoader)
+    assert eval_dataloader is None
+    
+    assert get_model.return_value.to.call_args.args[0] == "cuda"
+    
+    
+@patch('llama_recipes.finetuning.train')
+@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
+@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
+@patch('llama_recipes.finetuning.get_preprocessed_dataset')
+@patch('llama_recipes.finetuning.optim.AdamW')
+@patch('llama_recipes.finetuning.StepLR')
+def test_finetuning_with_validation(step_lr, optimizer, get_dataset, tokenizer, get_model, train):
+    kwargs = {"run_validation": False}
+    
+    get_dataset.return_value = [1]
+    
+    main(**kwargs)
+    
+    assert train.call_count == 1
+    
+    args, kwargs = train.call_args
+    train_dataloader = args[1]
+    eval_dataloader = args[2]
+    
+    assert isinstance(train_dataloader, DataLoader)
+    assert isinstance(eval_dataloader, DataLoader)
+    
+    assert get_model.return_value.to.call_args.args[0] == "cuda"
+    
+    
+@patch('llama_recipes.finetuning.train')
+@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
+@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
+@patch('llama_recipes.finetuning.get_preprocessed_dataset')
+@patch('llama_recipes.finetuning.generate_peft_config')
+@patch('llama_recipes.finetuning.get_peft_model')
+@patch('llama_recipes.finetuning.optim.AdamW')
+@patch('llama_recipes.finetuning.StepLR')
+def test_finetuning_peft(step_lr, optimizer, get_peft_model, gen_peft_config, get_dataset, tokenizer, get_model, train):
+    kwargs = {"use_peft": True}
+    
+    get_dataset.return_value = [1]
+    
+    main(**kwargs)
+    
+    assert get_peft_model.return_value.to.call_args.args[0] == "cuda"
+    assert get_peft_model.return_value.print_trainable_parameters.call_count == 1