소스 검색

Fix some small nits in README.md (#334)

Hamid Shojanazeri 1 년 전
부모
커밋
24ffd96d02
1개의 변경된 파일6개의 추가작업 그리고 8개의 파일을 삭제
  1. 6 8
      README.md

+ 6 - 8
README.md

@@ -65,8 +65,6 @@ Optional dependencies can also be combines with [option1,option2].
 
 **Note** All the setting defined in [config files](src/llama_recipes/configs/) can be passed as args through CLI when running the script, there is no need to change from config files directly.
 
-**Note** In case need to run PEFT model with FSDP, please make sure to use the PyTorch Nightlies.
-
 **For more in depth information checkout the following:**
 
 * [Single GPU Fine-tuning](./docs/single_gpu.md)
@@ -78,7 +76,7 @@ Optional dependencies can also be combines with [option1,option2].
 
 # Where to find the models?
 
-You can find llama v2 models on Hugging Face hub [here](https://huggingface.co/meta-llama), where models with `hf` in the name are already converted to Hugging Face checkpoints so no further conversion is needed. The conversion step below is only for original model weights from Meta that are hosted on Hugging Face model hub as well.
+You can find Llama 2 models on Hugging Face hub [here](https://huggingface.co/meta-llama), where models with `hf` in the name are already converted to Hugging Face checkpoints so no further conversion is needed. The conversion step below is only for original model weights from Meta that are hosted on Hugging Face model hub as well.
 
 # Model conversion to Hugging Face
 The recipes and notebooks in this folder are using the Llama 2 model definition provided by Hugging Face's transformers library.
@@ -118,7 +116,7 @@ All the parameters in the examples and recipes below need to be further tuned to
 #if running on multi-gpu machine
 export CUDA_VISIBLE_DEVICES=0
 
-python -m llama_recipes.finetuning  --use_peft --peft_method lora --quantization --model_name /patht_of_model_folder/7B --output_dir Path/to/save/PEFT/model
+python -m llama_recipes.finetuning  --use_peft --peft_method lora --quantization --model_name /path_of_model_folder/7B --output_dir path/to/save/PEFT/model
 
 ```
 
@@ -135,7 +133,7 @@ Here we make use of Parameter Efficient Methods (PEFT) as described in the next
 
 ```bash
 
-torchrun --nnodes 1 --nproc_per_node 4  examples/finetuning.py --enable_fsdp --use_peft --peft_method lora --model_name /patht_of_model_folder/7B --fsdp_config.pure_bf16 --output_dir Path/to/save/PEFT/model
+torchrun --nnodes 1 --nproc_per_node 4  examples/finetuning.py --enable_fsdp --use_peft --peft_method lora --model_name /path_of_model_folder/7B --fsdp_config.pure_bf16 --output_dir path/to/save/PEFT/model
 
 ```
 
@@ -146,7 +144,7 @@ Here we use FSDP as discussed in the next section which can be used along with P
 Setting `use_fast_kernels` will enable using of Flash Attention or Xformer memory-efficient kernels based on the hardware being used. This would speed up the fine-tuning job. This has been enabled in `optimum` library from Hugging Face as a one-liner API, please read more [here](https://pytorch.org/blog/out-of-the-box-acceleration/).
 
 ```bash
-torchrun --nnodes 1 --nproc_per_node 4  examples/finetuning.py --enable_fsdp --use_peft --peft_method lora --model_name /patht_of_model_folder/7B --fsdp_config.pure_bf16 --output_dir Path/to/save/PEFT/model --use_fast_kernels
+torchrun --nnodes 1 --nproc_per_node 4  examples/finetuning.py --enable_fsdp --use_peft --peft_method lora --model_name /path_of_model_folder/7B --fsdp_config.pure_bf16 --output_dir path/to/save/PEFT/model --use_fast_kernels
 ```
 
 ### Fine-tuning using FSDP Only
@@ -155,7 +153,7 @@ If you are interested in running full parameter fine-tuning without making use o
 
 ```bash
 
-torchrun --nnodes 1 --nproc_per_node 8  examples/finetuning.py --enable_fsdp --model_name /patht_of_model_folder/7B --dist_checkpoint_root_folder model_checkpoints --dist_checkpoint_folder fine-tuned --use_fast_kernels
+torchrun --nnodes 1 --nproc_per_node 8  examples/finetuning.py --enable_fsdp --model_name /path_of_model_folder/7B --dist_checkpoint_root_folder model_checkpoints --dist_checkpoint_folder fine-tuned --use_fast_kernels
 
 ```
 
@@ -165,7 +163,7 @@ If you are interested in running full parameter fine-tuning on the 70B model, yo
 
 ```bash
 
-torchrun --nnodes 1 --nproc_per_node 8 examples/finetuning.py --enable_fsdp --low_cpu_fsdp --fsdp_config.pure_bf16 --model_name /patht_of_model_folder/70B --batch_size_training 1 --dist_checkpoint_root_folder model_checkpoints --dist_checkpoint_folder fine-tuned
+torchrun --nnodes 1 --nproc_per_node 8 examples/finetuning.py --enable_fsdp --low_cpu_fsdp --fsdp_config.pure_bf16 --model_name /path_of_model_folder/70B --batch_size_training 1 --dist_checkpoint_root_folder model_checkpoints --dist_checkpoint_folder fine-tuned
 
 ```