|
@@ -0,0 +1,230 @@
|
|
|
+import argparse
|
|
|
+import json
|
|
|
+import logging
|
|
|
+import os
|
|
|
+import re
|
|
|
+import sys
|
|
|
+from pathlib import Path
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+import lm_eval
|
|
|
+from lm_eval import evaluator, tasks
|
|
|
+from lm_eval.utils import make_table
|
|
|
+
|
|
|
+
|
|
|
+def _handle_non_serializable(o):
|
|
|
+ if isinstance(o, np.int64) or isinstance(o, np.int32):
|
|
|
+ return int(o)
|
|
|
+ elif isinstance(o, set):
|
|
|
+ return list(o)
|
|
|
+ else:
|
|
|
+ return str(o)
|
|
|
+
|
|
|
+
|
|
|
+def setup_logging(verbosity):
|
|
|
+ logging.basicConfig(
|
|
|
+ level=verbosity.upper(), format="%(asctime)s - %(levelname)s - %(message)s"
|
|
|
+ )
|
|
|
+ return logging.getLogger(__name__)
|
|
|
+
|
|
|
+
|
|
|
+def handle_output(args, results, logger):
|
|
|
+ if not args.output_path:
|
|
|
+ if args.log_samples:
|
|
|
+ logger.error("Specify --output_path for logging samples.")
|
|
|
+ sys.exit(1)
|
|
|
+ logger.info(json.dumps(results, indent=2, default=_handle_non_serializable))
|
|
|
+ return
|
|
|
+
|
|
|
+ path = Path(args.output_path)
|
|
|
+ if path.is_file() or path.with_name("results.json").is_file():
|
|
|
+ logger.warning(f"File already exists at {path}. Results will be overwritten.")
|
|
|
+
|
|
|
+ output_dir = path.parent if path.suffix in (".json", ".jsonl") else path
|
|
|
+ output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
+
|
|
|
+ results_str = json.dumps(results, indent=2, default=_handle_non_serializable)
|
|
|
+ if args.show_config:
|
|
|
+ logger.info(results_str)
|
|
|
+
|
|
|
+ file_path = os.path.join(args.output_path, "results.json")
|
|
|
+ with open(file_path , "w", encoding="utf-8") as f:
|
|
|
+ f.write(results_str)
|
|
|
+
|
|
|
+ if args.log_samples:
|
|
|
+ samples = results.pop("samples", {})
|
|
|
+ for task_name, _ in results.get("configs", {}).items():
|
|
|
+ output_name = re.sub(r"/|=", "__", args.model_args) + "_" + task_name
|
|
|
+ sample_file = output_dir.joinpath(f"{output_name}.jsonl")
|
|
|
+ sample_data = json.dumps(
|
|
|
+ samples.get(task_name, {}), indent=2, default=_handle_non_serializable
|
|
|
+ )
|
|
|
+ sample_file.write_text(sample_data, encoding="utf-8")
|
|
|
+
|
|
|
+ batch_sizes = ",".join(map(str, results.get("config", {}).get("batch_sizes", [])))
|
|
|
+ summary = f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}"
|
|
|
+ logger.info(summary)
|
|
|
+ logger.info(make_table(results))
|
|
|
+ if "groups" in results:
|
|
|
+ logger.info(make_table(results, "groups"))
|
|
|
+
|
|
|
+
|
|
|
+def load_tasks(args):
|
|
|
+ tasks.initialize_tasks()
|
|
|
+ if args.open_llm_leaderboard_tasks:
|
|
|
+ current_dir = os.getcwd()
|
|
|
+ config_dir = os.path.join(current_dir, "open_llm_leaderboard")
|
|
|
+ lm_eval.tasks.include_path(config_dir)
|
|
|
+ return [
|
|
|
+ "arc_challenge_25_shot",
|
|
|
+ "hellaswag_10_shot",
|
|
|
+ "truthfulqa_mc2",
|
|
|
+ "winogrande_5_shot",
|
|
|
+ "gsm8k",
|
|
|
+ "mmlu",
|
|
|
+ ]
|
|
|
+ return args.tasks.split(",") if args.tasks else []
|
|
|
+
|
|
|
+
|
|
|
+def parse_eval_args():
|
|
|
+ parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
|
|
|
+ parser.add_argument(
|
|
|
+ "--model", "-m", default="hf", help="Name of model, e.g., `hf`."
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--tasks",
|
|
|
+ "-t",
|
|
|
+ default=None,
|
|
|
+ help="Comma-separated list of tasks, or 'list' to display available tasks.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--model_args",
|
|
|
+ "-a",
|
|
|
+ default="",
|
|
|
+ help="Comma-separated string arguments for model, e.g., `pretrained=EleutherAI/pythia-160m`.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--open_llm_leaderboard_tasks",
|
|
|
+ "-oplm",
|
|
|
+ action="store_true",
|
|
|
+ default=False,
|
|
|
+ help="Choose the list of tasks with specification in HF open LLM-leaderboard.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--num_fewshot",
|
|
|
+ "-f",
|
|
|
+ type=int,
|
|
|
+ default=None,
|
|
|
+ help="Number of examples in few-shot context.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--batch_size",
|
|
|
+ "-b",
|
|
|
+ default=1,
|
|
|
+ help="Batch size, can be 'auto', 'auto:N', or an integer.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--max_batch_size",
|
|
|
+ type=int,
|
|
|
+ default=None,
|
|
|
+ help="Maximal batch size with 'auto' batch size.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--device", default=None, help="Device for evaluation, e.g., 'cuda', 'cpu'."
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--output_path", "-o", type=str, default=None, help="Path for saving results."
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--limit",
|
|
|
+ "-L",
|
|
|
+ type=float,
|
|
|
+ default=None,
|
|
|
+ help="Limit number of examples per task.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--use_cache", "-c", default=None, help="Path to cache db file, if used."
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--verbosity",
|
|
|
+ "-v",
|
|
|
+ default="INFO",
|
|
|
+ help="Logging level: CRITICAL, ERROR, WARNING, INFO, DEBUG.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--gen_kwargs",
|
|
|
+ default=None,
|
|
|
+ help="Generation kwargs for tasks that support it.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--check_integrity",
|
|
|
+ action="store_true",
|
|
|
+ help="Whether to run the relevant part of the test suite for the tasks.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--write_out",
|
|
|
+ "-w",
|
|
|
+ action="store_true",
|
|
|
+ default=False,
|
|
|
+ help="Prints the prompt for the first few documents.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--log_samples",
|
|
|
+ "-s",
|
|
|
+ action="store_true",
|
|
|
+ default=False,
|
|
|
+ help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--show_config",
|
|
|
+ action="store_true",
|
|
|
+ default=False,
|
|
|
+ help="If True, shows the full config of all tasks at the end of the evaluation.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--include_path",
|
|
|
+ type=str,
|
|
|
+ default=None,
|
|
|
+ help="Additional path to include if there are external tasks.",
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--decontamination_ngrams_path", default=None
|
|
|
+ ) # Not currently used
|
|
|
+ return parser.parse_args()
|
|
|
+
|
|
|
+
|
|
|
+def evaluate_model(args):
|
|
|
+ try:
|
|
|
+ task_list = load_tasks(args)
|
|
|
+ # Customized model such as Quantized model etc.
|
|
|
+ # In case you are working with a custom model, you can use the following guide to add it here:
|
|
|
+ # https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/interface.md#external-library-usage
|
|
|
+
|
|
|
+ # Evaluate
|
|
|
+ results = evaluator.simple_evaluate(
|
|
|
+ model=args.model,
|
|
|
+ model_args=args.model_args,
|
|
|
+ tasks=task_list,
|
|
|
+ num_fewshot=args.num_fewshot,
|
|
|
+ batch_size=args.batch_size,
|
|
|
+ max_batch_size=args.max_batch_size,
|
|
|
+ device=args.device,
|
|
|
+ use_cache=args.use_cache,
|
|
|
+ limit=args.limit,
|
|
|
+ decontamination_ngrams_path=args.decontamination_ngrams_path,
|
|
|
+ check_integrity=args.check_integrity,
|
|
|
+ write_out=args.write_out,
|
|
|
+ log_samples=args.log_samples,
|
|
|
+ gen_kwargs=args.gen_kwargs,
|
|
|
+ )
|
|
|
+ handle_output(args, results, logger)
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f"An error occurred during evaluation: {e}")
|
|
|
+ sys.exit(1)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ args = parse_eval_args()
|
|
|
+ logger = setup_logging(args.verbosity)
|
|
|
+ evaluate_model(args)
|