|
@@ -0,0 +1,140 @@
|
|
|
+# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
+# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
|
|
|
+
|
|
|
+# from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
|
|
+
|
|
|
+import fire
|
|
|
+import torch
|
|
|
+import os
|
|
|
+import sys
|
|
|
+import time
|
|
|
+from typing import List
|
|
|
+
|
|
|
+from transformers import CodeLlamaTokenizer
|
|
|
+sys.path.append("..")
|
|
|
+from safety_utils import get_safety_checker
|
|
|
+from model_utils import load_model, load_peft_model, load_llama_from_config
|
|
|
+
|
|
|
+def main(
|
|
|
+ model_name,
|
|
|
+ peft_model: str=None,
|
|
|
+ quantization: bool=False,
|
|
|
+ max_new_tokens =100, #The maximum numbers of tokens to generate
|
|
|
+ prompt_file: str=None,
|
|
|
+ seed: int=42, #seed value for reproducibility
|
|
|
+ do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
|
|
|
+ min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
|
|
|
+ use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
|
|
|
+ top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
|
|
|
+ temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
|
|
|
+ top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
|
|
+ repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
|
|
|
+ length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
|
|
|
+ enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
|
|
|
+ enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
|
|
|
+ enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
|
|
|
+ max_padding_length: int=None, # the max padding length to be used with tokenizer padding the prompts.
|
|
|
+ use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
|
|
|
+ **kwargs
|
|
|
+):
|
|
|
+ if prompt_file is not None:
|
|
|
+ assert os.path.exists(
|
|
|
+ prompt_file
|
|
|
+ ), f"Provided Prompt file does not exist {prompt_file}"
|
|
|
+ with open(prompt_file, "r") as f:
|
|
|
+ user_prompt = "\n".join(f.readlines())
|
|
|
+ elif not sys.stdin.isatty():
|
|
|
+ user_prompt = "\n".join(sys.stdin.readlines())
|
|
|
+ else:
|
|
|
+ print("No user prompt provided. Exiting.")
|
|
|
+ sys.exit(1)
|
|
|
+
|
|
|
+ # Set the seeds for reproducibility
|
|
|
+ torch.cuda.manual_seed(seed)
|
|
|
+ torch.manual_seed(seed)
|
|
|
+
|
|
|
+ model = load_model(model_name, quantization)
|
|
|
+ model.config.tp_size=1
|
|
|
+ if peft_model:
|
|
|
+ model = load_peft_model(model, peft_model)
|
|
|
+
|
|
|
+ model.eval()
|
|
|
+
|
|
|
+ if use_fast_kernels:
|
|
|
+ """
|
|
|
+ Setting 'use_fast_kernels' will enable
|
|
|
+ using of Flash Attention or Xformer memory-efficient kernels
|
|
|
+ based on the hardware being used. This would speed up inference when used for batched inputs.
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ from optimum.bettertransformer import BetterTransformer
|
|
|
+ model = BetterTransformer.transform(model)
|
|
|
+ except ImportError:
|
|
|
+ print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")
|
|
|
+
|
|
|
+ tokenizer = CodeLlamaTokenizer.from_pretrained(model_name)
|
|
|
+ tokenizer.add_special_tokens(
|
|
|
+ {
|
|
|
+
|
|
|
+ "pad_token": "<PAD>",
|
|
|
+ }
|
|
|
+ )
|
|
|
+ model.resize_token_embeddings(model.config.vocab_size + 1)
|
|
|
+
|
|
|
+ safety_checker = get_safety_checker(enable_azure_content_safety,
|
|
|
+ enable_sensitive_topics,
|
|
|
+ enable_salesforce_content_safety,
|
|
|
+ )
|
|
|
+
|
|
|
+ # Safety check of the user prompt
|
|
|
+ safety_results = [check(user_prompt) for check in safety_checker]
|
|
|
+ are_safe = all([r[1] for r in safety_results])
|
|
|
+ if are_safe:
|
|
|
+ print("User prompt deemed safe.")
|
|
|
+ print(f"User prompt:\n{user_prompt}")
|
|
|
+ else:
|
|
|
+ print("User prompt deemed unsafe.")
|
|
|
+ for method, is_safe, report in safety_results:
|
|
|
+ if not is_safe:
|
|
|
+ print(method)
|
|
|
+ print(report)
|
|
|
+ print("Skipping the inference as the prompt is not safe.")
|
|
|
+ sys.exit(1) # Exit the program with an error status
|
|
|
+
|
|
|
+ batch = tokenizer(user_prompt, padding='max_length', truncation=True, max_length=max_padding_length, return_tensors="pt")
|
|
|
+ batch = {k: v.to("cuda") for k, v in batch.items()}
|
|
|
+
|
|
|
+ start = time.perf_counter()
|
|
|
+ with torch.no_grad():
|
|
|
+ outputs = model.generate(
|
|
|
+ **batch,
|
|
|
+ max_new_tokens=max_new_tokens,
|
|
|
+ do_sample=do_sample,
|
|
|
+ top_p=top_p,
|
|
|
+ temperature=temperature,
|
|
|
+ min_length=min_length,
|
|
|
+ use_cache=use_cache,
|
|
|
+ top_k=top_k,
|
|
|
+ repetition_penalty=repetition_penalty,
|
|
|
+ length_penalty=length_penalty,
|
|
|
+ **kwargs
|
|
|
+ )
|
|
|
+ e2e_inference_time = (time.perf_counter()-start)*1000
|
|
|
+ print(f"the inference time is {e2e_inference_time} ms")
|
|
|
+ filling = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
+ # Safety check of the model output
|
|
|
+ safety_results = [check(filling) for check in safety_checker]
|
|
|
+ are_safe = all([r[1] for r in safety_results])
|
|
|
+ if are_safe:
|
|
|
+ print("User input and model output deemed safe.")
|
|
|
+ print(user_prompt.replace("<FILL_ME>", filling))
|
|
|
+ else:
|
|
|
+ print("Model output deemed unsafe.")
|
|
|
+ for method, is_safe, report in safety_results:
|
|
|
+ if not is_safe:
|
|
|
+ print(method)
|
|
|
+ print(report)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ fire.Fire(main)
|