|
@@ -6,16 +6,18 @@ from unittest.mock import patch
|
|
|
|
|
|
@patch('llama_recipes.finetuning.train')
|
|
|
@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
|
|
|
-@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
|
|
|
+# @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
|
|
|
@patch('llama_recipes.finetuning.optim.AdamW')
|
|
|
@patch('llama_recipes.finetuning.StepLR')
|
|
|
-def test_samsum_dataset(step_lr, optimizer, tokenizer, get_model, train, mocker):
|
|
|
+def test_samsum_dataset(step_lr, optimizer, get_model, train, mocker):
|
|
|
+# def test_samsum_dataset(step_lr, optimizer, tokenizer, get_model, train, mocker):
|
|
|
from llama_recipes.finetuning import main
|
|
|
|
|
|
- tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
|
|
|
+ # tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
|
|
|
|
|
|
BATCH_SIZE = 8
|
|
|
kwargs = {
|
|
|
+ "model_name": "decapoda-research/llama-7b-hf",
|
|
|
"batch_size_training": 8,
|
|
|
"val_batch_size": 1,
|
|
|
"use_peft": False,
|
|
@@ -35,4 +37,7 @@ def test_samsum_dataset(step_lr, optimizer, tokenizer, get_model, train, mocker)
|
|
|
|
|
|
assert len(train_dataloader) == TRAIN_SAMPLES // BATCH_SIZE
|
|
|
assert len(eval_dataloader) == VAL_SAMPLES
|
|
|
-
|
|
|
+
|
|
|
+ assert "labels" in next(iter(train_dataloader)).keys()
|
|
|
+ assert "input_ids" in next(iter(train_dataloader)).keys()
|
|
|
+ assert "attention_mask" in next(iter(train_dataloader)).keys()
|