|
@@ -1,9 +1,11 @@
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
|
|
|
|
|
|
+from pytest import approx
|
|
|
from unittest.mock import patch
|
|
|
-import importlib
|
|
|
|
|
|
+from torch.nn import Linear
|
|
|
+from torch.optim import AdamW
|
|
|
from torch.utils.data.dataloader import DataLoader
|
|
|
|
|
|
from llama_recipes.finetuning import main
|
|
@@ -72,4 +74,31 @@ def test_finetuning_peft(step_lr, optimizer, get_peft_model, gen_peft_config, ge
|
|
|
main(**kwargs)
|
|
|
|
|
|
assert get_peft_model.return_value.to.call_args.args[0] == "cuda"
|
|
|
- assert get_peft_model.return_value.print_trainable_parameters.call_count == 1
|
|
|
+ assert get_peft_model.return_value.print_trainable_parameters.call_count == 1
|
|
|
+
|
|
|
+
|
|
|
+@patch('llama_recipes.finetuning.train')
|
|
|
+@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
|
|
|
+@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
|
|
|
+@patch('llama_recipes.finetuning.get_preprocessed_dataset')
|
|
|
+@patch('llama_recipes.finetuning.get_peft_model')
|
|
|
+@patch('llama_recipes.finetuning.StepLR')
|
|
|
+def test_finetuning_weight_decay(step_lr, get_peft_model, get_dataset, tokenizer, get_model, train):
|
|
|
+ kwargs = {"weight_decay": 0.01}
|
|
|
+
|
|
|
+ get_dataset.return_value = [1]
|
|
|
+
|
|
|
+ get_peft_model.return_value = Linear(1,1)
|
|
|
+ get_peft_model.return_value.print_trainable_parameters=lambda:None
|
|
|
+ main(**kwargs)
|
|
|
+
|
|
|
+ assert train.call_count == 1
|
|
|
+
|
|
|
+ args, kwargs = train.call_args
|
|
|
+ optimizer = args[4]
|
|
|
+
|
|
|
+ print(optimizer.state_dict())
|
|
|
+
|
|
|
+ assert isinstance(optimizer, AdamW)
|
|
|
+ assert optimizer.state_dict()["param_groups"][0]["weight_decay"] == approx(0.01)
|
|
|
+
|