Browse Source

clean up unit tests + add batching test

Matthias Reso 1 năm trước cách đây
mục cha
commit
07bcffbf50
2 tập tin đã thay đổi với 112 bổ sung0 xóa
  1. 18 0
      tests/conftest.py
  2. 94 0
      tests/test_batching.py

+ 18 - 0
tests/conftest.py

@@ -0,0 +1,18 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
+
+import pytest
+
+from transformers import LlamaTokenizer
+
+
+@pytest.fixture
+def setup_tokenizer():
+    def _helper(tokenizer):
+        #Align with Llama 2 tokenizer
+        tokenizer.from_pretrained.return_value = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
+        tokenizer.from_pretrained.return_value.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>'})
+        tokenizer.from_pretrained.return_value.bos_token_id = 1
+        tokenizer.from_pretrained.return_value.eos_token_id = 2
+
+    return _helper

+ 94 - 0
tests/test_batching.py

@@ -0,0 +1,94 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
+
+import pytest
+from unittest.mock import patch
+
+
+@patch('llama_recipes.finetuning.train')
+@patch('llama_recipes.finetuning.LlamaTokenizer')
+@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
+@patch('llama_recipes.finetuning.optim.AdamW')
+@patch('llama_recipes.finetuning.StepLR')
+def test_packing(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer):
+    from llama_recipes.finetuning import main
+
+    setup_tokenizer(tokenizer)
+
+    kwargs = {
+        "model_name": "decapoda-research/llama-7b-hf",
+        "batch_size_training": 8,
+        "val_batch_size": 1,
+        "use_peft": False,
+        "dataset": "samsum_dataset",
+        "batching_strategy": "packing",
+        }
+
+    main(**kwargs)
+
+    assert train.call_count == 1
+
+    args, kwargs = train.call_args
+    train_dataloader = args[1]
+    eval_dataloader = args[2]
+
+    assert len(train_dataloader) == 96
+    assert len(eval_dataloader) == 42
+
+    batch = next(iter(train_dataloader))
+
+    assert "labels" in batch.keys()
+    assert "input_ids" in batch.keys()
+    assert "attention_mask" in batch.keys()
+
+    assert batch["labels"][0].size(0) == 4096
+    assert batch["input_ids"][0].size(0) == 4096
+    assert batch["attention_mask"][0].size(0) == 4096
+
+
+@patch('llama_recipes.finetuning.train')
+@patch('llama_recipes.finetuning.LlamaTokenizer')
+@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
+@patch('llama_recipes.finetuning.optim.AdamW')
+@patch('llama_recipes.finetuning.StepLR')
+@patch('llama_recipes.finetuning.setup')
+@patch('llama_recipes.finetuning.FSDP')
+@patch('llama_recipes.finetuning.torch.distributed.is_initialized')
+@patch('llama_recipes.utils.config_utils.dist')
+def test_distributed_packing(dist, is_initialized, fsdp, setup, step_lr, optimizer, get_model, tokenizer, train, setup_tokenizer):
+    import os
+    from llama_recipes.finetuning import main
+
+    setup_tokenizer(tokenizer)
+
+    rank = 0
+    os.environ['LOCAL_RANK'] = f'{rank}'
+    os.environ['RANK'] = f'{rank}'
+    os.environ['WORLD_SIZE'] = '2'
+    os.environ['MASTER_ADDR'] = 'localhost'
+    os.environ['MASTER_PORT'] = '12345'
+
+    kwargs = {
+        "model_name": "decapoda-research/llama-7b-hf",
+        "batch_size_training": 8,
+        "val_batch_size": 1,
+        "use_peft": False,
+        "dataset": "samsum_dataset",
+        "batching_strategy": "packing",
+        "enable_fsdp": True
+        }
+
+    is_initialized.return_value = True
+    dist.get_rank.return_value = rank
+    dist.get_world_size.return_value = 2
+
+    main(**kwargs)
+
+    assert train.call_count == 1
+
+    args, kwargs = train.call_args
+    train_dataloader = args[1]
+    eval_dataloader = args[2]
+
+    assert len(train_dataloader) == 96 //2
+    assert len(eval_dataloader) == 42 //2