|
@@ -31,7 +31,8 @@ def main(
|
|
|
length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
|
|
|
enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
|
|
|
enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
|
|
|
- enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5
|
|
|
+ enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
|
|
|
+ max_padding_length: int=None, # the max padding length to be used with tokenizer padding the prompts.
|
|
|
use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
|
|
|
**kwargs
|
|
|
):
|
|
@@ -76,10 +77,11 @@ def main(
|
|
|
"pad_token": "<PAD>",
|
|
|
}
|
|
|
)
|
|
|
+ model.resize_token_embeddings(model.config.vocab_size + 1)
|
|
|
|
|
|
safety_checker = get_safety_checker(enable_azure_content_safety,
|
|
|
enable_sensitive_topics,
|
|
|
- enable_saleforce_content_safety,
|
|
|
+ enable_salesforce_content_safety,
|
|
|
)
|
|
|
|
|
|
# Safety check of the user prompt
|
|
@@ -94,10 +96,15 @@ def main(
|
|
|
if not is_safe:
|
|
|
print(method)
|
|
|
print(report)
|
|
|
- print("Skipping the inferece as the prompt is not safe.")
|
|
|
+ print("Skipping the inference as the prompt is not safe.")
|
|
|
sys.exit(1) # Exit the program with an error status
|
|
|
+
|
|
|
+ if peft_model:
|
|
|
+ model = load_peft_model(model, peft_model)
|
|
|
+
|
|
|
+ model.eval()
|
|
|
+ batch = tokenizer(user_prompt, padding='max_length', truncation=True,max_length=max_padding_length,return_tensors="pt")
|
|
|
|
|
|
- batch = tokenizer(user_prompt, return_tensors="pt")
|
|
|
batch = {k: v.to("cuda") for k, v in batch.items()}
|
|
|
start = time.perf_counter()
|
|
|
with torch.no_grad():
|