123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- from auditorium import Show
- from auditorium.show import Context
- show = Show('My Show')
- @show.slide
- def intro(ctx):
- """
- ### Mathematical Foundation of Algorithms
- Algebra - Complex Numbers
- """
- @show.slide
- def score(ctx):
- """
- Each day homework will have a value of 12 points.
- - Homework: 12 * 12 = 144 points
- - Final Exam: 56 points (Mandatory participation)
- - Maximum grade: 180 points
- """
- @show.slide
- def complex_number(ctx):
- """
- ## Complex numbers
- $$\sqrt{-1} = ?$$
- """
- @complex_number.slide
- def complex_number_inner_1(ctx):
- """
- ## Complex numbers
- $$i^2 = -1$$
- $$i = \sqrt{-1}$$
- """
- @complex_number.slide
- def complex_number_inner_2(ctx):
- """
- ## Complex numbers
- $$i^2 = -1$$
- $$i = \sqrt{-1}$$
- """
- @complex_number.slide
- def introduction_to_complex(ctx):
- """
- ## Introduction to complex numbers
- """
- @complex_number.slide
- def implement_complex_number(ctx):
- """
- ## Implement complex number
- """
- @show.slide
- def triangles(ctx):
- """
- ## Draw triangles
- """
- @show.slide
- def complex_number_inner(ctx):
- """
- ## Draw complex fractals
- """
- @ show.slide
- def homework(ctx):
- """
- Homework
- """
- @homework.slide
- def task_1(ctx):
- """
- `**`
- Implement remaining methods of complex number:
- - substraction
- - multiplication
- - division
- - exponentiation
- """
- @homework.slide
- def task_2(ctx):
- """
- `**`
- Given a polynomial of degree 2:
- $$a \cdot x^2 + b \cdot x + c$$
- Compute the roots of this polynomial
- """
- @homework.slide
- def task_3(ctx):
- """
- `***`
- Prove that:
- $$(\\cos \\theta + i \\sin \\theta)^n = \\cos n \\theta + i \\sin n \\theta$$
- """
- @homework.slide
- def task_4(ctx):
- """
- `**`
- 1. Given a complex number in rectangular form, convert to polar form.
- 2. Given a complex number in polar form, convert to rectangular form.
- """
- @show.slide
- def bye(ctx):
- """
- ### Mathematical Foundation of Algorithms
- Algebra - Complex Numbers
- """
|