from auditorium import Show from auditorium.show import Context show = Show('My Show') @show.slide def intro(ctx): """ ### Mathematical Foundation of Algorithms Algebra - Complex Numbers """ @show.slide def score(ctx): """ Each day homework will have a value of 12 points. - Homework: 12 * 12 = 144 points - Final Exam: 56 points (Mandatory participation) - Maximum grade: 180 points """ @show.slide def complex_number(ctx): """ ## Complex numbers $$\sqrt{-1} = ?$$ """ @complex_number.slide def complex_number_inner_1(ctx): """ ## Complex numbers $$i^2 = -1$$ $$i = \sqrt{-1}$$ """ @complex_number.slide def complex_number_inner_2(ctx): """ ## Complex numbers $$i^2 = -1$$ $$i = \sqrt{-1}$$ """ @complex_number.slide def introduction_to_complex(ctx): """ ## Introduction to complex numbers """ @complex_number.slide def implement_complex_number(ctx): """ ## Implement complex number """ @show.slide def triangles(ctx): """ ## Draw triangles """ @show.slide def complex_number_inner(ctx): """ ## Draw complex fractals """ @ show.slide def homework(ctx): """ Homework """ @homework.slide def task_1(ctx): """ `**` Implement remaining methods of complex number: - substraction - multiplication - division - exponentiation """ @homework.slide def task_2(ctx): """ `**` Given a polynomial of degree 2: $$a \cdot x^2 + b \cdot x + c$$ Compute the roots of this polynomial """ @homework.slide def task_3(ctx): """ `***` Prove that: $$(\\cos \\theta + \\sin \\theta)^n = \\cos n \\theta + \\sin n \\theta$$ """ @homework.slide def task_4(ctx): """ `**` 1. Given a complex number in rectangular form, convert to polar form. 2. Given a complex number in polar form, convert to rectangular form. """ @show.slide def bye(ctx): """ ### Mathematical Foundation of Algorithms Algebra - Complex Numbers """