2 Commity ac78bf90ff ... 1d29e49ece

Autor SHA1 Wiadomość Data
  Marcelo 1d29e49ece Lesson 2 3 lat temu
  Marcelo 696008a1d1 lesson 2 3 lat temu
1 zmienionych plików z 145 dodań i 0 usunięć
  1. 145 0
      lesson-02/main.py

+ 145 - 0
lesson-02/main.py

@@ -0,0 +1,145 @@
+from auditorium import Show
+from auditorium.show import Context
+
+show = Show('My Show')
+
+
+@show.slide
+def intro(ctx):
+    """
+    ### Mathematical Foundation of Algorithms
+
+    Algebra - Complex Numbers
+    """
+
+
+@show.slide
+def score(ctx):
+    """
+    Each day homework will have a value of 12 points.
+
+    - Homework: 12 * 12 = 144 points
+    - Final Exam: 56 points (Mandatory participation)
+    - Maximum grade: 180 points
+    """
+
+
+@show.slide
+def complex_number(ctx):
+    """
+    ## Complex numbers
+
+    $$\sqrt{-1} = ?$$
+    """
+
+
+@complex_number.slide
+def complex_number_inner_1(ctx):
+    """
+    ## Complex numbers
+
+    $$i^2 = -1$$
+    $$i = \sqrt{-1}$$
+    """
+
+
+@complex_number.slide
+def complex_number_inner_2(ctx):
+    """
+    ## Complex numbers
+
+    $$i^2 = -1$$
+    $$i = \sqrt{-1}$$
+    """
+
+
+@complex_number.slide
+def introduction_to_complex(ctx):
+    """
+    ## Introduction to complex numbers
+    """
+
+
+@complex_number.slide
+def implement_complex_number(ctx):
+    """
+    ## Implement complex number
+    """
+
+
+@show.slide
+def triangles(ctx):
+    """
+    ## Draw triangles
+    """
+
+
+@show.slide
+def complex_number_inner(ctx):
+    """
+    ## Draw complex fractals
+    """
+
+
+@ show.slide
+def homework(ctx):
+    """
+    Homework
+    """
+
+
+@homework.slide
+def task_1(ctx):
+    """
+    `**`
+
+    Implement remaining methods of complex number:
+
+    - substraction
+    - multiplication
+    - division
+    - exponentiation
+    """
+
+
+@homework.slide
+def task_2(ctx):
+    """
+    `**`
+
+    Given a polynomial of degree 2:
+
+    $$a \cdot x^2 + b \cdot x + c$$
+
+    Compute the roots of this polynomial
+    """
+
+
+@homework.slide
+def task_3(ctx):
+    """
+    `***`
+
+    Prove that:
+
+    $$(\\cos \\theta + i \\sin \\theta)^n = \\cos n \\theta + i \\sin n \\theta$$
+    """
+
+
+@homework.slide
+def task_4(ctx):
+    """
+    `**`
+
+    1. Given a complex number in rectangular form, convert to polar form.
+    2. Given a complex number in polar form, convert to rectangular form.
+    """
+
+
+@show.slide
+def bye(ctx):
+    """
+    ### Mathematical Foundation of Algorithms
+
+    Algebra - Complex Numbers
+    """