123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- '''Bloom Filter: Probabilistic set membership testing for large sets'''
- # Shamelessly borrowed (under MIT license) from http://code.activestate.com/recipes/577686-bloom-filter/
- # About Bloom Filters: http://en.wikipedia.org/wiki/Bloom_filter
- # Tweaked a bit by Daniel Richard Stromberg, mostly to make it pass pylint and give it a little nicer
- # __init__ parameters.
- import math
- import array
- import random
- # In the literature:
- # k is the number of probes - we call this num_probes_k
- # m is the number of bits in the filter - we call this num_bits_m
- # n is the ideal number of elements to eventually be stored in the filter - we call this ideal_num_elements_n
- # p is the desired error rate when full - we call this error_rate_p
- def get_probe_index_and_bitmask(bloom_filter, key):
- '''Apply num_probes_k hash functions to key. Generate the array index and bitmask corresponding to each result'''
- # We're using key as a seed to a pseudorandom number generator
- hasher = random.Random(key).randrange
- for _ in range(bloom_filter.num_probes_k):
- # We could precompute this length for speed. But we don't
- array_index = hasher(bloom_filter.num_words)
- bit_index = hasher(32)
- yield array_index, 1 << bit_index
- class Bloom_filter:
- '''Probabilistic set membership testing for large sets'''
- def __init__(self, ideal_num_elements_n, error_rate_p, probe_offsetter=get_probe_index_and_bitmask):
- if ideal_num_elements_n <= 0:
- raise ValueError('ideal_num_elements_n must be > 0')
- if not (0 < error_rate_p < 1):
- raise ValueError('error_rate_p must be between 0 and 1 inclusive')
- self.error_rate_p = error_rate_p
- # With fewer elements, we should do very well. With more elements, our error rate "guarantee"
- # drops rapidly.
- self.ideal_num_elements_n = ideal_num_elements_n
- numerator = -1 * self.ideal_num_elements_n * math.log(self.error_rate_p)
- denominator = math.log(2) ** 2
- #self.num_bits_m = - int((self.ideal_num_elements_n * math.log(self.error_rate_p)) / (math.log(2) ** 2))
- real_num_bits_m = numerator / denominator
- self.num_bits_m = int(math.ceil(real_num_bits_m))
- self.num_words = int((self.num_bits_m + 31) / 32)
- self.array_ = array.array('L', [0]) * self.num_words
- # AKA num_offsetters
- # Verified against http://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives
- real_num_probes_k = (self.num_bits_m / self.ideal_num_elements_n) * math.log(2)
- self.num_probes_k = int(math.ceil(real_num_probes_k))
- self.probe_offsetter = probe_offsetter
- def __repr__(self):
- return 'Bloom_filter(ideal_num_elements_n=%d, error_rate_p=%f, num_bits_m=%d)' % (
- self.ideal_num_elements_n,
- self.error_rate_p,
- self.num_bits_m,
- )
- def add(self, key):
- '''Add an element to the filter'''
- for index, mask in self.probe_offsetter(self, key):
- self.array_[index] |= mask
- def __iadd__(self, key):
- self.add(key)
- return self
- def _match_template(self, bloom_filter):
- '''Compare a sort of signature for two bloom filters. Used in preparation for binary operations'''
- return (self.num_bits_m == bloom_filter.num_bits_m \
- and self.num_probes_k == bloom_filter.num_probes_k \
- and self.probe_offsetter == bloom_filter.probe_offsetter)
- def union(self, bloom_filter):
- '''Compute the set union of two bloom filters'''
- if self._match_template(bloom_filter):
- self.array_ = [a | b for a, b in zip(self.array_, bloom_filter.array_)]
- else:
- # Union b/w two unrelated bloom filter raises this
- raise ValueError("Mismatched bloom filters")
- def __ior__(self, bloom_filter):
- self.union(bloom_filter)
- return self
- def intersection(self, bloom_filter):
- '''Compute the set intersection of two bloom filters'''
- if self._match_template(bloom_filter):
- self.array_ = [a & b for a, b in zip(self.array_, bloom_filter.array_)]
- else:
- # Intersection b/w two unrelated bloom filter raises this
- raise ValueError("Mismatched bloom filters")
- def __iand__(self, bloom_filter):
- self.intersection(bloom_filter)
- return self
- def __contains__(self, key):
- return all(self.array_[i] & mask for i, mask in self.probe_offsetter(self, key))
|