1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- '''Bloom Filter: Probabilistic set membership testing for large sets'''
- # Shamelessly borrowed (under MIT license) from http://code.activestate.com/recipes/577686-bloom-filter/
- # About Bloom Filters: http://en.wikipedia.org/wiki/Bloom_filter
- # Tweaked a bit by Daniel Richard Stromberg, mostly to make it pass pylint and give it a little nicer
- # __init__ parameters.
- import math
- import array
- import random
- def get_probes(bfilter, key):
- '''Generate a bunch of fast hash functions - the output of this function is knoown tersely in the literature as "K"'''
- hasher = random.Random(key).randrange
- for _ in range(bfilter.num_probes):
- array_index = hasher(len(bfilter.array_))
- bit_index = hasher(32)
- yield array_index, 1 << bit_index
- class Bloom_filter:
- '''Probabilistic set membership testing for large sets'''
- def __init__(self, ideal_num_elements, error_rate, probe_func=get_probes):
- if ideal_num_elements <= 0:
- raise ValueError('ideal_num_elements must be > 0')
- if not (0 < error_rate < 1):
- raise ValueError('error_rate must be between 0 and 1 inclusive')
- self.error_rate = error_rate
- # With fewer elements, we should do very well. With more elements, our error rate "guarantee"
- # drops rapidly.
- self.ideal_num_elements = ideal_num_elements
- self.num_bits = - int((self.ideal_num_elements * math.log(self.error_rate)) / (math.log(2) ** 2))
- self.num_words = int((self.num_bits + 31) / 32)
- self.array_ = array.array('L', [0]) * self.num_words
- self.num_probes = int((self.num_bits / self.ideal_num_elements) * math.log(2))
- self.probe_func = probe_func
- def __repr__(self):
- return 'Bloom_filter(ideal_num_elements=%d, error_rate=%f, num_bits=%d)' % (
- self.ideal_num_elements,
- self.error_rate,
- self.num_bits,
- )
- def add(self, key):
- '''Add an element to the filter'''
- for i, mask in self.probe_func(self, key):
- self.array_[i] |= mask
- def __iadd__(self, key):
- self.add(key)
- return self
- def _match_template(self, bfilter):
- '''Compare a sort of signature for two bloom filters. Used in preparation for binary operations'''
- return (self.num_bits == bfilter.num_bits \
- and self.num_probes == bfilter.num_probes \
- and self.probe_func == bfilter.probe_func)
- def union(self, bfilter):
- '''Compute the set union of two bloom filters'''
- if self._match_template(bfilter):
- self.array_ = [a | b for a, b in zip(self.array_, bfilter.array_)]
- else:
- # Union b/w two unrelated bloom filter raises this
- raise ValueError("Mismatched bloom filters")
- def __ior__(self, bfilter):
- self.union(bfilter)
- return self
- def intersection(self, bfilter):
- '''Compute the set intersection of two bloom filters'''
- if self._match_template(bfilter):
- self.array_ = [a & b for a, b in zip(self.array_, bfilter.array_)]
- else:
- # Intersection b/w two unrelated bloom filter raises this
- raise ValueError("Mismatched bloom filters")
- def __iand__(self, bfilter):
- self.intersection(bfilter)
- return self
- def __contains__(self, key):
- return all(self.array_[i] & mask for i, mask in self.probe_func(self, key))
|