#!/usr/bin/env python # -*- encoding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function import io import re from glob import glob from os.path import basename from os.path import dirname from os.path import join from os.path import splitext from setuptools import find_packages from setuptools import setup def read(*names, **kwargs): return io.open( join(dirname(__file__), *names), encoding=kwargs.get('encoding', 'utf8') ).read() setup( name="drs-bloom-filter", version="1.01", packages=find_packages('src'), package_dir={'': 'src'}, py_modules=[splitext(basename(path))[0] for path in glob('src/*.py')], # scripts=['drs_bloom_filter.py', 'python2x3.py'], # metadata for upload to PyPI author="Daniel Richard Stromberg", author_email="strombrg@gmail.com", description='Pure Python Bloom Filter module', long_description=""" A pure python bloom filter (low storage requirement, probabilistic set datastructure) is provided. It is known to work on CPython 2.x, CPython 3.x, Pypy and Jython. Includes mmap, in-memory and disk-seek backends. The user specifies the desired maximum number of elements and the desired maximum false positive probability, and the module calculates the rest. """, license="MIT", keywords="probabilistic set datastructure", url='http://stromberg.dnsalias.org/~strombrg/drs-bloom-filter/', platforms='Cross platform', classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", ], )